(本小题8分)已知三棱锥A—BCD及其三视图如图所示.
(1)求三棱锥A—BCD的体积与点D到平面ABC的距离;
(2)求二面角 B-AC-D的正弦值.
(本小题8分) 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,
若F,E分别为PC,BD的中点,
求证:
(l)EF∥平面PAD;
(2)平面PDC⊥平面PAD
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
(Ⅰ)求证:直线BD⊥平面PAC;
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)已知M在线段PC上,且BM=DM=,CM=3,求二面角的余弦值.
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2.
(1)求异面直线PA与BC所成角的正切值;
(2)证明平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值.
(本小题满分9分)
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.
(1)求四棱锥S-ABCD的体积.
(2)求证:面SAB⊥面SBC.
(3)求SC与底面ABCD所成角的正切值.
(本小题满分9分)
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=3,BC=4,AB=5,点D是AB的中点.
(1)求证AC⊥BC1
(2)求证AC1∥平面CDB1
如图,四棱锥中,平面,底面是直角梯形,⊥,⊥,,为中点.
(1) 求证:平面PDC平面PAD;
(2) 求证:BE∥平面PAD;
(3)求二面角的余弦值.
在四棱锥中,,,平面,为 的中点,.
(1)求四棱锥的体积;
(2)若为的中点,求证:平面平面;
(3)求二面角的大小.
(本小题满分14分)
如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°
(本小题满分16分)
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点.
(1)求的长;
(2)求的值;
(3)求证:A1B⊥C1M.
试题篮
()