优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

(12分) 22.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC, 
底面ABCD,PA=AD=DC=AB=1,M是PB的中点

(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求异面直线CM与AD所成角的正切值;
(Ⅲ)求面MAC与面BAC所成二面角的正切值

  • 题型:未知
  • 难度:未知

(本小题10分)已知正方体是底对角线的交点.

求证:(1)∥面
(2 ). 

  • 题型:未知
  • 难度:未知

(本小题10分)如图已知在三棱柱ABC——A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点.
 
(1) 求证:面PCC1⊥面MNQ;
(2) 求证:PC1∥面MNQ。

  • 题型:未知
  • 难度:未知

(10)分) 已知正方体是底对角线的交点.
 
求证:(1)∥面;(2). 

  • 题型:未知
  • 难度:未知

平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC。
(1)求异面直线AD与BC所成角大小;
(2)求二面角B-AC-D平面角的大小;
(3)求四面体ABCD外接球的体积。

  • 题型:未知
  • 难度:未知

如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

  • 题型:未知
  • 难度:未知

,P、E在同侧,连接PE、AE.

求证:BC//面APE;
设F是内一点,且,求直线EF与面APF所成角的大小                                                   

  • 题型:未知
  • 难度:未知

在正方体
⑴求证:
⑵求异面直线所成角的大小.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,,侧面为等边三角形,

(Ⅰ)证明:平面;
(Ⅱ)求与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)若的中点为,求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。

(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

  • 题型:未知
  • 难度:未知

如图所示,已知M、N分别是AC、AD的中点,BCCD.

(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求证:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直线AC与平面BCD所成的角.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥的底面是正方形,⊥平面,点E
是SD上的点,且.

(1)求证:对任意的,都有AC⊥BE;
(2)若二面角C-AE-D的大小为,求的值.

  • 题型:未知
  • 难度:未知

(本小题共12分)
如图,已知四棱锥中,底面,四边形是直角梯形,

(1)证明:
(2)在线段上找出一点,使平面
指出点的位置并加以证明;

  • 题型:未知
  • 难度:未知

(本小题共12分)
如图,在直三棱柱中,,点的中点,

(1)求证:平面
(2)求证:平面

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题