优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

求到两定点距离相等的点的坐标满足的条件.

  • 题型:未知
  • 难度:未知

过△的重心任作一直线分别交,为中线
,,求的值

  • 题型:未知
  • 难度:未知

直线l的方程为y=x+3,在l上任取一点P,若过点P且以双曲线12x2-4y2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________

  • 题型:未知
  • 难度:未知

如图,Δ是内接于⊙O,,直线切⊙O于点,弦相交于点
(I) 求证:Δ≌Δ
(Ⅱ)若,求

  • 题型:未知
  • 难度:未知

抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;
(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

  • 题型:未知
  • 难度:未知

如图,已知是△的角平分线,∠,求证

  • 题型:未知
  • 难度:未知

 A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使∠OPA=,则椭圆离心率的范围是_________ 

来源:圆锥曲线方程
  • 题型:未知
  • 难度:未知

(本小题满分14分)
设圆满足条件:(1)截y轴所得的弦长为2;(2)被x轴分成两段弧,其弧长的比为3︰1;(3)圆心到直线的距离为.求这个圆的方程.

  • 题型:未知
  • 难度:未知

设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.

  • 题型:未知
  • 难度:未知

的直线分别交轴,轴正半轴于,求△周长和面积最小值

来源:解析几何
  • 题型:未知
  • 难度:未知

已知方程的方程,直线
(1)求的取值范围; (2)若圆与直线交于PQ两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.

  • 题型:未知
  • 难度:未知

以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知点,()是曲线C上的两点,点关于轴对称,直线分别交轴于点和点
(Ⅰ)用分别表示;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、NP的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).

  • 题型:未知
  • 难度:未知

已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.

  • 题型:未知
  • 难度:未知

已知圆C经过两点,且在y轴上截得的线段长为,半径小于5。
(Ⅰ)求圆C的方程;
(Ⅱ)若直线,且与圆C交于点,求直线的方程。

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题