设二次函数满足下列条件:
①当时, 的最小值为0,且恒成立;
②当时,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立
(本小题满分12分)
已知函数.
(Ⅰ)若为偶函数,求的值;
(Ⅱ)若在上有最小值9,求的值.
已知二次函数为常数,且)满足条件:,且方程有两个相等的实数根.
(1)求的解析式;
(2)求函数在区间上的最大值和最小值;
(3)是否存在实数使的定义域和值域分别为和,如果存在,求出的值,如不存在,请说明理由.
已知二次函数的图象与轴有交点为,的图象与轴的交点为。设,求证:的图象与轴的交点一定有一个介于点与之间。
(本小题满分12分)
已知二次函数, 满足且的最小值是.(Ⅰ)求的解析式;(Ⅱ)设函数,若函数在区间上是单调函数,求实数的取值范围。
(本小题满分14分)
二次函数.
(1)若对任意有恒成立,求实数的取值范围;
(2)讨论函数在区间上的单调性;
(3)若对任意的,有恒成立,求实数的取值范围.
已知二次函数的最小值为1,且。
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围。
试题篮
()