优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

附加题1.求下列函数的定义域
2.当时,函数取得最小值。

  • 题型:未知
  • 难度:未知

已知函数f(x)=2x2﹣(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.

  • 题型:未知
  • 难度:未知

(本小题13分)已知函数
(1)在右图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.
(3) 求的最小值。

  • 题型:未知
  • 难度:未知

已知向量,其中.函数在区间上有最大值为4,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

设函数),若,且对任意实数)不等式0恒成立.
(Ⅰ)求实数的值;
(Ⅱ)当[-2,2]时,是单调函数,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(原创)已知二次函数满足以下要求:
①函数的值域为;②恒成立。
(1)求函数的解析式;
(2)设,求的值域。

  • 题型:未知
  • 难度:未知

(12分)已知函数满足.
(1)设,求的上的值域;
(2)设,在上是单调函数,求的取值范围.

  • 题型:未知
  • 难度:未知

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

  • 题型:未知
  • 难度:未知

已知函数(a>1).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;    
(2)求数列的通项公式.

  • 题型:未知
  • 难度:未知

已知二次函数满足,且
(1)求二次函数的解析式;
(2)求函数的单调增区间和值域.

  • 题型:未知
  • 难度:未知

已知函数,设函数在区间上的最大值为
(1)若,试求出
(2)若对任意的恒成立,试求出的最大值.

  • 题型:未知
  • 难度:未知

已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围

  • 题型:未知
  • 难度:未知

已知函数.
(1)求不等式的解集;
(2)设,其中R,求在区间上的最小值.

  • 题型:未知
  • 难度:未知

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题