优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余 / 解答题
高中数学

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

  • 题型:未知
  • 难度:未知

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

  • 题型:未知
  • 难度:未知

若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
①设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
②问是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值,否则,请说明理由.

  • 题型:未知
  • 难度:未知

设函数
(1)若不等式的解集,求的值;
(2)若,求的最小值.

  • 题型:未知
  • 难度:未知

设函数,其中,区间
(Ⅰ)求的长度(注:区间的长度定义为);
(Ⅱ)给定常数,当时,求长度的最小值.

  • 题型:未知
  • 难度:未知

已知二次函数的二次项系数为,且不等式的解集为(1,3).
⑴若方程有两个相等实数根,求的解析式.
⑵若的最大值为正数,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数是二次函数,不等式的解集为,且在区间上的最小值是4.
(Ⅰ)求的解析式;
(Ⅱ)设,若对任意的均成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数.
(Ⅰ)当时,求关于的不等式解集;
(Ⅱ)当时,若恒成立,求实数的最大值.

  • 题型:未知
  • 难度:未知

已知函数(a>1).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

  • 题型:未知
  • 难度:未知

函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;    
(2)求数列的通项公式.

  • 题型:未知
  • 难度:未知

已知二次函数满足,且
(1)求二次函数的解析式;
(2)求函数的单调增区间和值域.

  • 题型:未知
  • 难度:未知

已知函数,设函数在区间上的最大值为
(1)若,试求出
(2)若对任意的恒成立,试求出的最大值.

  • 题型:未知
  • 难度:未知

已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围

  • 题型:未知
  • 难度:未知

已知函数.
(1)求不等式的解集;
(2)设,其中R,求在区间上的最小值.

  • 题型:未知
  • 难度:未知

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

  • 题型:未知
  • 难度:未知

高中数学二次剩余解答题