(本小题满分14分)函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)求g(a);
(2)若g(a)=,求a及此时f(x)的最大值.
已知函数,若存在,使,则称是函数的一个不动点.设二次函数.
(1)对任意实数,函数恒有两个相异的不动点,求的取值范围;
(2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
已知函数f(x)=a|x|+ (a>0,a≠1)
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=" f(" x),x∈[ 2,+∞),满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
(本小题满分16分)某商品的市场需求量(万件)、市场供应量(万件)与市场价格x(元/件)分别近似的满足下列关系:,,当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量。
(1)求平衡价格和平衡需求量;
(2)若要使平衡需求量增加6万件,政府对每件商品应给予多少元补贴?
(3)求当每件商品征税6元时新的平衡价格?
函数数列的前项和,且同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
(1)求函数的表达式;
(2)求数列的通项公式.
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围
设二次函数在区间上的最大值、最小值分别是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.
试题篮
()