(本小题满分14分)
已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足: 。
(1)求f(0),f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若,求数列{un}的前n项的和Sn 。
已知二次函数的最小值为1,且.
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图像恒在的图像上方,试确定实数的取值范围.
已知函数.
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标系中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).
设二次函数满足下列条件:①当时,的最小值为,且图像关于直线对称;②当时,恒成立.
(1)求的值;
(2)求的解析式;
(3)若在区间上恒有,求实数的取值范围.
试题篮
()