优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 二次剩余
高中数学

函数f(x)=ax2-(2+a)x-3在区间[,1]是单调函数,则a的取值范围是 (  )

A.0<a≤2 B.a≤2
C.a≥-2 D.a≥2
  • 题型:未知
  • 难度:未知

已知
⑴当不等式的解集为时,求实数的值;    
⑵若对任意实数恒成立,求实数的取值范围;
⑶设为常数,解关于的不等式.

来源:
  • 题型:未知
  • 难度:未知

函数
(1)若f(-1)=0,并对恒有,求的表达式;
(2)在(1)的条件下,对=—kx是单调函数,求k的范围。

  • 题型:未知
  • 难度:未知

函数
(1)若f(-1)=0,并对恒有,求的表达式;
(2)在(1)的条件下,对=—kx是单调函数,求k的范围。

  • 题型:未知
  • 难度:未知

已知二次函数满足,且
(1)求
(2)求上的最大值和最小值。

  • 题型:未知
  • 难度:未知

已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.

  • 题型:未知
  • 难度:未知

已知,则函数的最小值是(    )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知二次函数满足
(1)求二次函数的解析式。
(2)在区间上,的图像恒在的图像的上方。
求实数m的取值范围。

来源:
  • 题型:未知
  • 难度:未知

.已知二次函数的图象经过点是偶函数,函数的图象与直线相切,且切点位于第一象限
(Ⅰ)求函数的解析式
(Ⅱ)若对一切不等式恒成立,求实数的取值范围
(Ⅲ)若关于x的方程有三个不同的实数解,求实数k的值

  • 题型:未知
  • 难度:未知

(1)设xyzR,且xyz=1,求证x2y2z2
(2)设二次函数f (x)=ax2bxca>0),方程f (x)-x=0有两个实根x1x2,
且满足:0<x1x2,若x(0,x1)。
求证:xf (x)<x1

  • 题型:未知
  • 难度:未知

若函数yx2-4x-2的定义域为[0,m],值域为[-6,-2],则m的取值范围是(   )

A.(0,4) B.[2,4] C.(0,2) D.(2,4)
  • 题型:未知
  • 难度:未知

的图象开口向上,且顶点在第二象限,则的图象大概是:

 

来源:
  • 题型:未知
  • 难度:未知

已知.

来源:
  • 题型:未知
  • 难度:未知

若a,b是非零向量,且,则函数

A.一次函数且是奇函数 B.一次函数但不是奇函数
C.二次函数且是偶函数 D.二次函数但不是偶函数
  • 题型:未知
  • 难度:未知

.关于的方程的两实根为,若,则的取值范围是(   )

A. B. C. D.
  • 题型:未知
  • 难度:未知

高中数学二次剩余试题