(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga>1,则a的取值范围是(,1);
(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是 .
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.
(1)已知是上的正函数,求的等域区间;
(2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
(本小题满分16分)已知函数
(1)若不等式的解集为或,求的表达式;
(2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围;
(3)设, 且为偶函数, 判断+能否大于零?
对于二次函数f(x)=ax2+bx+c,有下列命题:
①若f(p)=q,f(q)=p(p≠q),则f(p+q)=-(p+q);
②若f(p)=f(q)(p≠q),则f(p+q)=c;
③若f(p+q)=c(p≠q),则p+q=0或f(p)=f(q).
其中一定正确的命题是________(写出所有正确命题的序号).
若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是________.
试题篮
()