设是定义在R上的偶函数,且在(-∞,0)上是增函数,则与的大小关系是( )
A. | B. |
C. | D. |
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
本题满分12分,每小题各4分)
已知函数,
(1)若函数的值域为,求实数a的值;
(2)若函数的递增区间为,求实数a的值;
(3)若函数在区间上是增函数,求实数a的取值范围.
已知函数是定义在R上的偶函数,且当时,.
(1)现已画出函数在y轴左侧的图象,如图所示,请补出完整函数的图象,并根据图象写出函数的增区间;
(2)求出函数的解析式和值域.
已知函数的图象上一点,过作平行于轴的直线,直线,求函数,和轴,及直线轴围成的面积
已知函数f(x)=ax2+bx+c(a>0),α、β为方程f(x)=x的两根,且0<α<β<,
0<x<α,给出下列不等式,其中成立的是 ( )
①x<f(x) ②α<f(x) ③x>f(x) ④α>f(x)
A.①④ | B.③④ | C.①② | D.②④ |
已知二次函数的图象与x轴有两个不同的公共点,且,当时,恒有.
(1)当时,求不等式的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且,求a的值;
(3)若,且对所有恒成立,求正实数m的最小值.
已知二次函数的图像与轴有两个不同的公共点,且有,当时,恒有、
(1)试比较与c的大小;
(2)试求的取值范围;
(3)若以二次函数的图像与坐标轴的三个交点为顶点的三角形的面积为5,求的取值范围
函数的图象为曲线,函数的图象为曲线,过轴上的动点作垂直于轴的直线分别交曲线,于两点,则线段长度的最大值为( )
A.2 | B.4 | C.5 | D. |
函数满足,且在区间上的值域是,则坐标所表示的点在图中的( )
A.线段和线段上 | B.线段和线段上 |
C.线段和线段上 | D.线段和线段上 |
试题篮
()