优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法
高中数学

已知任意一个正整数的三次幂可表示成一些连续奇数的和,如图所示,可表示为,则我们把7、9、11叫做的“数因子”,若的一个“数因子”为,则       

  • 题型:未知
  • 难度:未知

用数学归纳法证明“42n-1+3n+1(n∈N*)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是(   )

A.16(42k-1+3k+1)-13×3k+1
B.4×42k+9×3k
C.(42k-1+3k+1)+15×42k-1+2×3k+1
D.3(42k-1+3k+1)-13×42k-1
  • 题型:未知
  • 难度:未知

用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )

A.(k+1)2+2k2 B.(k+1)2+k2
C.(k+1)2 D.
  • 题型:未知
  • 难度:未知

,其中为正整数.
(1)求的值;
(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.

  • 题型:未知
  • 难度:未知

,则对于          

  • 题型:未知
  • 难度:未知

给出四个等式:
1=1
1-4=-(1+2)
1-4+9=1+2+3
1-4+9-16=-(1+2+3+4)
……
(1)写出第5,6个等式,并猜测第n(n∈N*)个等式
(2)用数学归纳法证明你猜测的等式.

  • 题型:未知
  • 难度:未知

是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?

  • 题型:未知
  • 难度:未知

用数学归纳法证明,“当n为正奇数时,能被整除”时,第2步归纳假设应写成(   )

A.假设时正确,再推证时正确
B.假设时正确,再推证时正确
C.假设时正确,再推证时正确
D.假设时正确,再推证时正确
  • 题型:未知
  • 难度:未知

用数学归纳法证明1+2+3+ +n2,则当n=k+1时左端应在n=k的基础上加上(  )

A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+ +(k+1)2
  • 题型:未知
  • 难度:未知

给出四个等式:





(1)写出第个等式,并猜测第)个等式;
(2)用数学归纳法证明你猜测的等式.

  • 题型:未知
  • 难度:未知

用数学归纳法证明“时,从“”时,左边应增添的式子是(    ).

A. B. C. D.
  • 题型:未知
  • 难度:未知

观察下列不等式



……
照此规律,第五个不等式为________.

  • 题型:未知
  • 难度:未知

观察以下个等式:





照以上式子规律:
写出第个等式,并猜想第个等式;
用数学归纳法证明上述所猜想的第个等式成立.

  • 题型:未知
  • 难度:未知

用数学归纳法证明:

  • 题型:未知
  • 难度:未知

对于数列 ,实常数
(1)求,并猜想 (2)证明你的猜想.

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法试题