已知多项式f(n)=n5+n4+n3-n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论.
2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为(=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量和与的乘积成正比,比例系数为其中=200万.
(1)证明:;
(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.
(本小题满分15分)已知函数.
(1)当时,求在最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:().
数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,.
(Ⅰ)求;
(Ⅱ)猜想,并用数学归纳法证明.
数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,.
(Ⅰ)求;
(Ⅱ)猜想,并用数学归纳法证明.
(本小题满分13分)
已知数列{}满足,
(I)写出,并推测的表达式;
(II)用数学归纳法证明所得的结论。
已知数列满足,且。
(Ⅰ)求,,的值;
(Ⅱ)猜想的通项公式,并用数学归纳法证明你的猜想。
试题篮
()