探究:是否存在常数a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)
对对一切正自然数n均成立,若存在求出a、b、c,并证明;若不存在,请说明理由.
(12分)在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形展品,其中第一堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图方式固定摆放,从第二层开始每层的小球自然垒放在下一层之上,第堆的第层就放一个乒乓球,以表示第堆的乒乓球总数.
(1)求;
(2)求(用表示)(可能用到的公式:)
(满分12分)已知数列的前n项和满足(n为正整数).
(1)令,求证数列是等差数列,并求数列的通项公式;
(2)令,,试比较与的大小,并予证明.
本题满分14分)
在数列中,,且.
(Ⅰ) 求,猜想的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数,都有;
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.
试题篮
()