优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 第二数学归纳法 / 解答题
高中数学

由下列各个不等式:

你能得到一个怎样的一般不等式?并加以证明.

  • 题型:未知
  • 难度:未知

证明:.

  • 题型:未知
  • 难度:未知

已知数列计算由此推测出的计算公式,并用数学归纳法证明.

  • 题型:未知
  • 难度:未知

已知
(1)当时,试比较的大小关系;
(2)猜想的大小关系,并给出证明.

  • 题型:未知
  • 难度:未知

已知是函数的两个零点,其中常数,设
(Ⅰ)用表示
(Ⅱ)求证:
(Ⅲ)求证:对任意的

  • 题型:未知
  • 难度:未知

的展开式中,的系数为的系数为,其中
(1)求(2)是否存在常数p,q(p<q),使,对恒成立?证明你的结论.

  • 题型:未知
  • 难度:未知

是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

在数列中,已知().
(1)当时,分别求的值,判断是否为定值,并给出证明;
(2)求出所有的正整数,使得为完全平方数.

  • 题型:未知
  • 难度:未知

各项均为正数的数列对一切均满足.证明:
(1)
(2)

  • 题型:未知
  • 难度:未知

由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.

  • 题型:未知
  • 难度:未知

已知数列中,为数列的前项和,且
(1)求数列的通项公式;
(2)设,求数列的前项的和
(3)证明对一切,有

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知数列中,
(Ⅰ)若,设,求证数列是等比数列,并求出数列的通项公式;
(Ⅱ)若,证明:

  • 题型:未知
  • 难度:未知

设数列{}满足:a1=2,对一切正整数n,都有
(1)探讨数列{}是否为等比数列,并说明理由;
(2)设

  • 题型:未知
  • 难度:未知

设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).

  • 题型:未知
  • 难度:未知

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:
(1)函数f(x)在区间(0,1)是增函数;
(2)an<an+1<1.

  • 题型:未知
  • 难度:未知

高中数学第二数学归纳法解答题