已知,,,,则第5个等式为 ,…,推广到第个等式为__ _;(注意:按规律写出等式的形式,不要求计算结果.)
已知为公差不为零的等差数列,首项,的部分项、、 、恰为等比数列,且,,.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:(是正整数
平面内有n(n∈N+,n≥2)条直线,其中任何两条不平行,任何三条不过
同一点,证明:交点的个数f(n)=.
已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较+++…+与1的大小,并说明理由.
(本小题满分10分)
如图:假设三角形数表中的第n+1行的第二个数为(n≥1,n∈N*)
(1)归纳出与的关系式, 并求出的通项公式;
(2)设,求证:
已知数列的各项均为正整数,对于任意n∈N*,都有 成立,且.
(1)求,的值;
(2)猜想数列的通项公式,并给出证明.
已知函数
(Ⅰ)若函数在其定义域上为单调函数,求的取值范围;
(Ⅱ)若函数的图像在处的切线的斜率为0,,已知求证:
(Ⅲ)在(2)的条件下,试比较与的大小,并说明理由.
已知集合
,
,令
表示集合
所含元素的个数.
(1)写出
的值;
(2)当
时,写出
的表达式,并用数学归纳法证明.
(本小题满分12 分)已知函数是定义在R上的不恒为零的函数,且对于任意的、∈R,都满足,若=1,.
(1)求、、的值;
(2)猜测数列通项公式,并用数学归纳法证明.
试题篮
()