设函数对任意实数x 、y都有,
(1)求的值;
(2)若,求、、的值;
(3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。
某个命题与正整数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得
A.n=6时该命题不成立 | B.n=6时该命题成立 |
C.n=4时该命题不成立 | D.n=4时该命题成立 |
设函数f(x)=(x>0),观察:f1(x)=f(x)=, f2(x)=f(f1(x))=, f3(x)=f(f2(x))=, f4(x)=f(f3(x))=……根据以上事实,由归纳推理可得:当n∈N*, n≥2时,fn(x)=f(n-1(x))= .
试题篮
()