在用数学归纳法证明f(n)=++…+<1(n∈N*,n≥3)的过程中:假设当n=k(k∈N*,k≥3)时,不等式f(k)<1成立,则需证当n=k+1时,f(k+1)<1也成立.若f(k+1)=f(k)+g(k),则g(k)=( )
A.+ | B.+﹣ | C.﹣ | D.﹣ |
用数学归纳法证明1+2+3+…+n3=,则当n=k+1时,左端应在n=k的基础上加上( )
A.k3+1 |
B.(k+1)3 |
C. |
D.(k3+1)+(k3+2)+(k3+3)+…+(k3+1)3 |
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
用数学归纳法证明“42n-1+3n+1(n∈N*)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是( )
A.16(42k-1+3k+1)-13×3k+1 |
B.4×42k+9×3k |
C.(42k-1+3k+1)+15×42k-1+2×3k+1 |
D.3(42k-1+3k+1)-13×42k-1 |
用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2 | B.(k+1)2+k2 |
C.(k+1)2 | D. |
观察下列各不等式:
…
(1)由上述不等式,归纳出一个与正整数有关的一般性结论;
(2)用数学归纳法证明你得到的结论.
观察下列等式
第一个式子
第二个式子
第三个式子
第四个式子
照此规律下去
(Ⅰ)写出第个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.
在数列{an}中,a1=,an+1=,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
试题篮
()