调查某初中1000名学生的肥胖情况,得下表:
|
偏瘦 |
正常 |
肥胖 |
女生(人) |
100 |
173 |
|
男生(人) |
177 |
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。
(1)求的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知,,肥胖学生中男生不少于女生的概率。
在海岛上有一座海拔千米的山,山顶设有一个观察站,上午时,测得一轮船在海岛北偏东,俯角(与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,当目标视线在水平视线的下方时称为俯角)为的处。到时分又测得该轮船在岛西偏北,俯角为的处。
(1)该轮船的航行速度是每小时多少千米?
(2)又经过一段时间后,轮船到达海岛正西方向的处,此时轮船距岛有多远?
已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB (2)DE·DC=AE·BD.
已知抛物线和点,过点P的直线与抛物线交与两点,设点P刚好为弦的中点。
(1)求直线的方程
(2)若过线段上任一(不含端点)作倾斜角为的直线交抛物线于,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。
(3)过P作斜率分别为的直线,交抛物线于,交抛物线于,是否存在使得(2)中的猜想成立,若存在,给出满足的条件。若不存在,请说明理由。
如图,A,B,C三个观察哨,A在B的正南,两地相距6km,C在B的北偏东60°,两地相距4km.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1km/s;4秒后B,C两个观察哨同时发现这种信号。在以过A,B两点的直线为y轴,以线段AB的垂直平分线为x轴的平面直角坐标系中,指出发了这种信号的地点P的坐标。
在经济学中,函数的边际函数定义为。某公司每月最多生产台报警系统装置,生产台的收入函数为(单位:元),其成本函数为(单位:元),利润是收入与成本之差。
(1)求利润函数及边际利润函数;
(2)利润函数与边际利润函数是否具有相等的最大值
(3)你认为本题中边际利润函数取最大值的实际意义是什么?
试题篮
()