已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有.
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.
设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.
定义在[﹣1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[﹣1,1],a+b≠0时,有.
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数m的取值范围.
已知定点与分别在轴、轴上的动点满足:,动点满足.
(1)求动点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点(为坐标原点);
(i)试判断直线与以为直径的圆的位置关系;
(ii)探究是否为定值?并证明你的结论.
如图已知抛物线:过点,直线交于,两点,过点且平行于轴的直线分别与直线和轴相交于点,.
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.
已知数列中,
(1)求,;
(2)求证:是等比数列,并求的通项公式;
(3)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
已知数列{an}的各项均为正数的等比数列,且a1a2=2,a3a4=32,
(1)求数列{an}的通项公式;
(2)设数列{bn}满足(n∈N*),求设数列{bn}的前n项和Tn.
已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使;
(3)设(2)中所确定的关于的函数为,证明:当时,有.
如图,点是椭圆的一个顶点,的长轴是圆的直径,、是过点且互相垂直的两条直线,其中交圆于、两点,交椭圆于另一点.
(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.
已知等差数列的首项,公差,且、、分别是等比数列的、、.
(1)求数列和的通项公式;
(2)设数列对任意正整数均有成立,求的值.
已知点在抛物线上,直线(,且)与抛物线,相交于、两点,直线、分别交直线于点、.
(1)求的值;
(2)若,求直线的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数,.
(1)若函数在其定义域上为增函数,求的取值范围;
(2)当时,函数在区间上存在极值,求的最大值.
(参考数值:自然对数的底数≈).
已知抛物线C:,点A、B在抛物线C上.
(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.
已知函数,()
(1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围
(2)设函数,当在区间内变化时,
(1)求函数的取值范围;
(2)若函数有零点,求实数m的最大值.
试题篮
()