优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

  • 题型:未知
  • 难度:未知

已知函数,其中.
(1)若,求曲线在点处的切线方程;
(2)求函数的极大值和极小值,若函数有三个零点,求的取值范围.

  • 题型:未知
  • 难度:未知

已知函数的一系列对应值如下表:



0





0
1

0

0

(1)求的解析式;
(2)若在中,,求的值.

  • 题型:未知
  • 难度:未知

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求的值.

  • 题型:未知
  • 难度:未知

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

  • 题型:未知
  • 难度:未知

设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当时,方程有唯一实数解,求正数的值.

  • 题型:未知
  • 难度:未知

新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
;    ②
试分别分析这两个函数模型是否符合公司要求.

  • 题型:未知
  • 难度:未知

如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量.

(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?

  • 题型:未知
  • 难度:未知

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

  • 题型:未知
  • 难度:未知

已知函数的图象关于轴对称,且.
(1)求函数的解析式;
(2)解不等式.

  • 题型:未知
  • 难度:未知

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

  • 题型:未知
  • 难度:未知

已知函数的最大值是1,其图像经过点
(1)求的解析式;
(2)已知,且的值.

  • 题型:未知
  • 难度:未知

设两向量满足的夹角为
(1)试求
(2)若向量与向量的夹角余弦值为非负值,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

  • 题型:未知
  • 难度:未知

高中数学解答题