优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 解答题
高中数学

已知数列为公差不为的等差数列,为前项和,的等差中项为,且.令数列的前项和为
(1)求
(2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

  • 题型:未知
  • 难度:未知

正三棱柱的所有棱长都为4,D为的中点.

(1)求证:⊥平面
(2)求二面角余弦值.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,求的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆,过点作圆的切线交椭圆于A,B两点。
(1)求椭圆的焦点坐标和离心率;
(2)求的取值范围;
(3)将表示为的函数,并求的最大值.

  • 题型:未知
  • 难度:未知

数列的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.
(1)当实数为何值时,数列是等比数列?
(2)在(1)的结论下,设是数列的前项和,求的值.

  • 题型:未知
  • 难度:未知

已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:

  • 题型:未知
  • 难度:未知

设数列的各项均为正实数,,若数列满足,其中为正常数,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得当时,恒成立?若存在,求出使结论成立的的取值范围和相应的的最小值;若不存在,请说明理由;
(3)若,设数列对任意的,都有成立,问数列是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

  • 题型:未知
  • 难度:未知

中,角所对的边分别为,设,记.
(1)求的取值范围;
(2)若的夹角为,求的值.

  • 题型:未知
  • 难度:未知

如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,

(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线与x轴围成一个等腰三角形,说明理由.

  • 题型:未知
  • 难度:未知

设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是
(1)求双曲线的方程;
(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.

  • 题型:未知
  • 难度:未知

已知函数上是增函数,
(1)求实数的取值集合
(2)当取值集合中的最小值时,定义数列;满足,求数列的通项公式;
(3)若,数列的前项和为,求证:.

  • 题型:未知
  • 难度:未知

已知函数
(1)求处切线方程;
(2)求证:函数在区间上单调递减;
(3)若不等式对任意的都成立,求实数的最大值.

  • 题型:未知
  • 难度:未知

已知函数
(1)讨论函数的单调性;
(2)证明:.

  • 题型:未知
  • 难度:未知

如图,在轴上方有一段曲线弧,其端点轴上(但不属于),对上任一点及点,满足:.直线分别交直线两点.

(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);

  • 题型:未知
  • 难度:未知

高中数学解答题