优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题
高中数学

(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
20
5
25
女生
10
15
25
合计
30
20
50

 
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
附:(临界值表供参考)


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

 

  • 题型:未知
  • 难度:未知

如图,过点作抛物线的切线,切点在第二象限.

(1)求切点的纵坐标;
(2)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

  • 题型:未知
  • 难度:未知

某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.
(1)从这16人中随机选取3人,记表示抽到“极幸福”的人数,求的分布列及数学期望,并求出至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的数学期望.

  • 题型:未知
  • 难度:未知

(本小题满分13分)已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足
(1)求椭圆的标准方程;
(2)⊙是以为直径的圆,一直线与⊙相切,并与椭圆交于不同的两点.当,且满足时,求面积的取值范围.

  • 题型:未知
  • 难度:未知

选修4—4:坐标系与参数方程
已知椭圆C:,直线
(Ⅰ)以原点O为极点,x轴正半轴为极轴建立极坐标系,求椭圆C与直线的极坐标方程;
(Ⅱ)已知P是上一动点,射线OP交椭圆C于点R,又点Q在OP上且满足.当点P在上移动时,求点Q在直角坐标系下的轨迹方程.

  • 题型:未知
  • 难度:未知

已知定点及椭圆,过点的动直线与该椭圆相交于两点.

(Ⅰ)若线段中点的横坐标是,求直线的方程;
(Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)讨论函数的单调区间;
(Ⅱ)已知,对于函数图象上任意不同的两点,其中,直线的斜率为,记,若求证

  • 题型:未知
  • 难度:未知

已知曲线,曲线.曲线的左顶点恰为曲线的左焦点.

(Ⅰ)求的值;
(Ⅱ)设为曲线上一点,过点作直线交曲线两点. 直线交曲线 两点. 若中点,
① 求证:直线的方程为
② 求四边形的面积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知,设函数
(Ⅰ)若 上无极值,求的值;
(Ⅱ)若存在,使得在[0, 2]上的最大值,求t的取值范围;
(Ⅲ)若为自然对数的底数)对任意恒成立时m的最大值为1,求t的取值范围.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,抛物线与椭圆在第一象限的交点为为坐标原点,为椭圆的右顶点,的面积为

(Ⅰ)求抛物线的方程;
(Ⅱ)过点作直线 两点,射线分别交两点,记的面积分别为,问是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)设数列的各项均为正数,它的前项的和为,且,数列满足.其中
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求证:数列的前项的和).

  • 题型:未知
  • 难度:未知

(本小题满分12分)已知正方体的棱长为分别是棱的中点,
(Ⅰ)求正方体的内切球的半径与外接球的半径之比;
(Ⅱ)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分15分)已知数列的首项
(1)求数列的通项公式;
(2)求数列的前n项和
(3)求证:

  • 题型:未知
  • 难度:未知

在平面直角坐标系上,设不等式组所表示的平面区域为,记内的整点(即横坐标和纵坐标均为整数的点)的个数为.则         ,经猜想可得到         

  • 题型:未知
  • 难度:未知

高中数学试题