已知椭圆
上两个不同的点
关于直线
对称.
(1)求实数
的取值范围;
(2)求
面积的最大值(
为坐标原点).
已知函数
,记
是
在区间
上的最大值.
(1)证明:当
时,
;
(2)当
,
满足
,求
的最大值.
在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(Ⅰ)求的极坐标方程.
(Ⅱ)若直线的极坐标方程为,设的交点为,求的面积.
已知过点
且斜率为
的直线
与圆
交于
两点.
(Ⅰ)求
的取值范围;
(Ⅱ)
,其中
为坐标原点,求
.
已知函数
.
(Ⅰ)当
为何值时,
轴为曲线
的切线;
(Ⅱ)用
表示
中的最小值,设函数
,讨论
)零点的个数.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中,=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
如图,椭圆
的离心率是
,过点
的动直线
与椭圆相交于
两点,当直线
平行与
轴时,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)在平面直角坐标系
中,是否存在与点
不同的定点
,使得
恒成立?若存在,求出点
的坐标;若不存在,请说明理由.
已知数列
与
满足
.
(1)若
,且
,求数列
的通项公式;
(2)设
的第
项是最大项,即
,求证:数列
的第
项是最大项;
(3)设
,求
的取值范围,使得
有最大值
与最小值
,且
.
已知椭圆
,过原点的两条直线
和
分别于椭圆交于
和
,记得到的平行四边形
的面积为
.
(1)设
,用
的坐标表示点
到直线
的距离,并证明
;
(2)设
与
的斜率之积为
,求面积
的值.
如图1,在直角梯形 中, , 是 的中点, 是 与 的交点,将 沿 折起到图2中 的位置,得到四棱锥 .
(Ⅰ)证明:
平面
;
(Ⅱ)当平面
平面
时,四棱锥
的体积为
,求
的值.
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马
中,侧棱
底面
,且
,点
是
的中点,连接
.
(Ⅰ)证明:
平面
. 试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马
的体积为
,四面体
的体积为
,求
的值.
已知数列的各项均为正数,,为自然对数的底数.
(Ⅰ)求函数的单调区间,并比较与的大小;
(Ⅱ)计算,由此推测计算的公式,并给出证明;
(Ⅲ)令,数列,的前项和分别记为, 证明:.
一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽滑动,且,.当栓子在滑槽内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
某厂用鲜牛奶在某台设备上生产
两种奶制品.生产1吨
产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨
产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天
产品的产量不超过
产品产量的2倍,设备每天生产
两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量
(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利 (单位:元)是一个随机变量.
(Ⅰ)求
的分布列和均值;
(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
设椭圆的方程为,点为坐标原点,点的坐标为,点的坐标为,点在线段上,满足,直线的斜率为.
(Ⅰ)求的离心率;
(Ⅱ)设点的坐标为,为线段的中点,点N关于直线的对称点的纵坐标为,求的方程.
试题篮
()