优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 数轴 / 解答题
初中数学

如图,一个点从数轴上的原点开始,先向左移动到达点,再向左移动 到达点,然后向右移动到达点.
(1)用1个单位长度表示,请你在数轴上表示出三点的位置;

(2)把点到点的距离记为,则=      
(3)阅读理解:观察式子:因此可以得到:括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.
问题解决
若点以每秒的速度向左移动,同时点分别以每秒的速度向右移动.设移动时间为秒,试探索:的值是否会随着的变化而改变?请说明理由.

  • 题型:未知
  • 难度:未知

如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图1-8并思考,完成下列各题:
   
(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;
(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.
(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?

  • 题型:未知
  • 难度:未知

如图,甲、乙两人(看成点)分别在数轴和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.

①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;

②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;

③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.

(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率

(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值;

(3)从如图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值.

来源:2020年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.

(1)则a=      ,b=     
(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,
①当PO=2PB时,求点P的运动时间t;
②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为     
(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.

  • 题型:未知
  • 难度:未知

如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

  • 题型:未知
  • 难度:未知

如图,点在数轴上,它们对应的数分别为,且点到原点的距离相等.求的值.

来源:2019年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.

  • 题型:未知
  • 难度:未知

我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式 | x - 2 | 的几何意义是数轴上 x 所对应的点与2所对应的点之间的距离:因为 | x + 1 | = | x - ( - 1 ) | ,所以 | x + 1 | 的几何意义就是数轴上 x 所对应的点与 - 1 所对应的点之间的距离.

(1)发现问题:代数式 | x + 1 | + | x - 2 | 的最小值是多少?

(2)探究问题:如图,点 A B P 分别表示数 - 1 、2、 x AB = 3

| x + 1 | + | x - 2 | 的几何意义是线段 PA PB 的长度之和,

当点 P 在线段 AB 上时, PA + PB = 3 ,当点 P 在点 A 的左侧或点 B 的右侧时, PA + PB > 3

| x + 1 | + | x - 2 | 的最小值是3.

(3)解决问题:

| x - 4 | + | x + 2 | 的最小值是  

②利用上述思想方法解不等式: | x + 3 | + | x - 1 | > 4

③当 a 为何值时,代数式 | x + a | + | x - 3 | 的最小值是2.

来源:2020年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为6个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.

(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是     
(2)当t=2秒时,点A与点P之间的距离是      个长度单位;
(3)当点A为原点时,点P表示的数是      ;(用含t的代数式表示)
(4)当t=      秒时,点P到点A的距离是点P到点B的距离的2倍.

  • 题型:未知
  • 难度:未知

在一条不完整的数轴上从左到右有点,其中,如图所示,设点所对应数的和是

(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?

(2)若原点在图中数轴上点的右边,且,求

来源:2017年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在数轴上,点 A B 分别表示数1、 2 x + 3

(1)求 x 的取值范围;

(2)数轴上表示数 x + 2 的点应落在  

A .点 A 的左边           B .线段 AB               C .点 B 的右边

来源:2018年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

元旦放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.
(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;
(2)问超市A和外公家C相距多少千米?
(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量.(精确到0.1升)

  • 题型:未知
  • 难度:未知

数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.

探究一:求不等式 | x 1 | < 2 的解集

(1)探究 | x 1 | 的几何意义

如图①,在以 O 为原点的数轴上,设点 A ' 对应的数是 x 1 ,由绝对值的定义可知,点 A ' 与点 O 的距离为 | x 1 | ,可记为 A ' O = | x 1 | .将线段 A ' O 向右平移1个单位得到线段 AB ,此时点 A 对应的数是 x ,点 B 对应的数是1.因为 AB = A ' O ,所以 AB = | x 1 | .因此, | x 1 | 的几何意义可以理解为数轴上 x 所对应的点 A 与1所对应的点 B 之间的距离 AB

(2)求方程 | x 1 | = 2 的解

因为数轴上3和 1 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, 1

(3)求不等式 | x 1 | < 2 的解集

因为 | x 1 | 表示数轴上 x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 x 的范围.

请在图②的数轴上表示 | x 1 | < 2 的解集,并写出这个解集.

探究二:探究 ( x a ) 2 + ( y b ) 2 的几何意义

(1)探究 x 2 + y 2 的几何意义

如图③,在直角坐标系中,设点 M 的坐标为 ( x , y ) ,过 M MP x 轴于 P ,作 MQ y 轴于 Q ,则 P 点坐标为 ( x , 0 ) Q 点坐标为 ( 0 , y ) OP = | x | OQ = | y | ,在 Rt Δ OPM 中, PM = OQ = | y | ,则 MO = O P 2 + P M 2 = | x | 2 + | y | 2 = x 2 + y 2 ,因此, x 2 + y 2 的几何意义可以理解为点 M ( x , y ) 与点 O ( 0 , 0 ) 之间的距离 MO

(2)探究 ( x 1 ) 2 + ( y 5 ) 2 的几何意义

如图④,在直角坐标系中,设点 A ' 的坐标为 ( x 1 , y 5 ) ,由探究二(1)可知, A ' O = ( x 1 ) 2 + ( y 5 ) 2 ,将线段 A ' O 先向右平移1个单位,再向上平移5个单位,得到线段 AB ,此时点 A 的坐标为 ( x , y ) ,点 B 的坐标为 ( 1 , 5 ) ,因为 AB = A ' O ,所以 AB = ( x 1 ) 2 + ( y 5 ) 2 ,因此 ( x 1 ) 2 + ( y 5 ) 2 的几何意义可以理解为点 A ( x , y ) 与点 B ( 1 , 5 ) 之间的距离 AB

(3)探究 ( x + 3 ) 2 + ( y 4 ) 2 的几何意义

请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.

(4) ( x a ) 2 + ( y b ) 2 的几何意义可以理解为:  

拓展应用:

(1) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的几何意义可以理解为:点 A ( x , y ) 与点 E ( 2 , 1 ) 的距离和点 A ( x , y ) 与点 F   (填写坐标)的距离之和.

(2) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的最小值为  (直接写出结果)

来源:2017年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

已知数轴上有A、B、C三点,分别代表﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.

(1)甲、乙多少秒后相遇?
(2)甲出发多少秒后,甲到A、B、C三点的距离和为40个单位?
(3)当甲到A、B、C三点的距离和为40个单位时,甲调头返回,当甲、乙在数轴上再次相遇时,相遇点表示的数是     

  • 题型:未知
  • 难度:未知

如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.

(1)若,求点C到原点的距离;
(2)如图2,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;
(3)如图3,在(1)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.

  • 题型:未知
  • 难度:未知

初中数学数轴解答题