优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

如图,已知抛物线 y = a x 2 + bx + c 的顶点为 A ( 4 , 3 ) ,与 y 轴相交于点 B ( 0 , 5 ) ,对称轴为直线 l ,点 M 是线段 AB 的中点.

(1)求抛物线的表达式;

(2)写出点 M 的坐标并求直线 AB 的表达式;

(3)设动点 P Q 分别在抛物线和对称轴 l 上,当以 A P Q M 为顶点的四边形是平行四边形时,求 P Q 两点的坐标.

来源:2019年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx 经过两点 A ( - 1 , 1 ) B ( 2 , 2 ) .过点 B BC / / x 轴,交抛物线于点 C ,交 y 轴于点 D

(1)求此抛物线对应的函数表达式及点 C 的坐标;

(2)若抛物线上存在点 M ,使得 ΔBCM 的面积为 7 2 ,求出点 M 的坐标;

(3)连接 OA OB OC AC ,在坐标平面内,求使得 ΔAOC ΔOBN 相似(边 OA 与边 OB 对应)的点 N 的坐标.

来源:2016年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = - 1 3 x 2 + bx + c 经过点 A ( 3 3 0 ) 和点 B ( 0 , 3 ) ,且这个抛物线的对称轴为直线 l ,顶点为 C

(1)求抛物线的解析式;

(2)连接 AB AC BC ,求 ΔABC 的面积.

来源:2018年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

已知,点 M 是二次函数 y = a x 2 ( a > 0 ) 图象上的一点,点 F 的坐标为 ( 0 , 1 4 a ) ,直角坐标系中的坐标原点 O 与点 M F 在同一个圆上,圆心 Q 的纵坐标为 1 8

(1)求 a 的值;

(2)当 O Q M 三点在同一条直线上时,求点 M 和点 Q 的坐标;

(3)当点 M 在第一象限时,过点 M MN x 轴,垂足为点 N ,求证: MF = MN + OF

来源:2016年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + bx + c x 轴于点 A ( 4 , 0 ) B ( 2 , 0 ) ,交 y 轴于点 C ( 0 , 6 ) ,在 y 轴上有一点 E ( 0 , 2 ) ,连接 AE

(1)求二次函数的表达式;

(2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求 ΔADE 面积的最大值;

(3)抛物线对称轴上是否存在点 P ,使 ΔAEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不存在,请说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

在"探索函数 y = a x 2 + bx + c 的系数 a b c 与图象的关系"活动中,老师给出了直角坐标系中的四个点: A ( 0 , 2 ) B ( 1 , 0 ) C ( 3 , 1 ) D ( 2 , 3 ) .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中 a 的值最大为 (    )

A.

5 2

B.

3 2

C.

5 6

D.

1 2

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线顶点 P ( 1 , 4 ) ,与 y 轴交于点 C ( 0 , 3 ) ,与 x 轴交于点 A B

(1)求抛物线的解析式.

(2) Q 是抛物线上除点 P 外一点, ΔBCQ ΔBCP 的面积相等,求点 Q 的坐标.

(3)若 M N 为抛物线上两个动点,分别过点 M N 作直线 BC 的垂线段,垂足分别为 D E .是否存在点 M N 使四边形 MNED 为正方形?如果存在,求正方形 MNED 的边长;如果不存在,请说明理由.

来源:2018年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 4 , 0 ) ,与 y 轴交于点 C ( 0 , 4 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;

②若 ΔBCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.

来源:2018年黑龙江省大庆市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx ( a 0 ) 过点 A ( 3 3 ) 和点 B ( 3 3 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C

(1)求抛物线的解析式;

(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A D P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;

(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 C 1 : y = x 2 2 x 与抛物线 C 2 : y = a x 2 + bx 开口大小相同、方向相反,它们相交于 O C 两点,且分别与 x 轴的正半轴交于点 B ,点 A OA = 2 OB

(1)求抛物线 C 2 的解析式;

(2)在抛物线 C 2 的对称轴上是否存在点 P ,使 PA + PC 的值最小?若存在,求出点 P 的坐标,若不存在,说明理由;

(3) M 是直线 OC 上方抛物线 C 2 上的一个动点,连接 MO MC M 运动到什么位置时, ΔMOC 面积最大?并求出最大面积.

来源:2019年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,已知抛物线 y = a x 2 + bx + c 的图象经过点 A ( 0 , 3 ) B ( 1 , 0 ) ,其对称轴为直线 l : x = 2 ,过点 A AC / / x 轴交抛物线于点 C AOB 的平分线交线段 AC 于点 E ,点 P 是抛物线上的一个动点,设其横坐标为 m

(1)求抛物线的解析式;

(2)若动点 P 在直线 OE 下方的抛物线上,连接 PE PO ,当 m 为何值时,四边形 AOPE 面积最大,并求出其最大值;

(3)如图②, F 是抛物线的对称轴 l 上的一点,在抛物线上是否存在点 P 使 ΔPOF 成为以点 P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由.

来源:2018年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 ( 2 a 3 4 ) x + 3 的图象经过点 A ( 4 , 0 ) ,与 y 轴交于点 B .在 x 轴上有一动点 C ( m 0 ) ( 0 < m < 4 ) ,过点 C x 轴的垂线交直线 AB 于点 E ,交该二次函数图象于点 D

(1)求 a 的值和直线 AB 的解析式;

(2)过点 D DF AB 于点 F ,设 ΔACE ΔDEF 的面积分别为 S 1 S 2 ,若 S 1 = 4 S 2 ,求 m 的值;

(3)点 H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且 DEGH 周长取最大值时,求点 G 的坐标.

来源:2018年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知直线 y = x + 3 x 轴、 y 轴分别相交于 A B 两点,抛物线 y = x 2 + bx + c 经过 A B 两点,点 M 在线段 OA 上,从 O 点出发,向点 A 以每秒1个单位的速度匀速运动;同时点 N 在线段 AB 上,从点 A 出发,向点 B 以每秒 2 个单位的速度匀速运动,连接 MN ,设运动时间为 t

(1)求抛物线解析式;

(2)当 t 为何值时, ΔAMN 为直角三角形;

(3)过 N NH / / y 轴交抛物线于 H ,连接 MH ,是否存在点 H 使 MH / / AB ,若存在,求出点 H 的坐标,若不存在,请说明理由.

来源:2018年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c x 轴相交于 A ( - 3 , 0 ) B 两点,与 y 轴相交于点 C ( 0 , 2 ) ,对称轴是直线 x = - 1 ,连接 AC

(1)求该抛物线的表达式;

(2)若过点 B 的直线 l 与抛物线相交于另一点 D ,当 ABD = BAC 时,求直线 l 的表达式;

(3)在(2)的条件下,当点 D x 轴下方时,连接 AD ,此时在 y 轴左侧的抛物线上存在点 P ,使 S ΔBDP = 3 2 S ΔABD .请直接出所有符合条件的点 P 的坐标.

来源:2021年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题