优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 三角形中位线定理 / 解答题
初中数学

如图, A B O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC

(1)求证: AC O 的切线;

(2)点 D E 分别是 AC OA 的中点, DE 所在直线交 O 于点 F G OA = 4 ,求 GF 的长.

来源:2021年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以等边三角形 ABC BC 边为直径画圆,交 AC 于点 D DF AB 于点 F ,连接 OF ,且 AF = 1

(1)求证: DF O 的切线;

(2)求线段 OF 的长度.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC 边上的中线,以 AB 为直径的 O BC 于点 D ,过 D MN AC 于点 M ,交 AB 的延长线于点 N ,过点 B BG MN G

(1)求证: ΔBGD ΔDMA

(2)求证:直线 MN O 的切线.

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, D E F 分别是 ΔABC 各边的中点,连接 DE EF AE

(1)求证:四边形 ADEF 为平行四边形;

(2)加上条件   后,能使得四边形 ADEF 为菱形,请从① BAC = 90 ° ;② AE 平分 BAC ;③ AB = AC 这三个条件中选择1个条件填空(写序号),并加以证明.

来源:2021年江苏省盐城市中考数学试卷
  • 题型:未知
  • 难度:未知

ABC为等边三角形, AB 8 AD BC 于点DE为线段 AD 上一点, AE 2 3 .以AE为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE N CE 的中点.

(1)如图1, EF AC 交于点G,连接 NG ,求线段 NG 的长;

(2)如图2,将 AEF 绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接 DN MN .当 30 ° α 120 ° 时,猜想∠DNM的大小是否为定值,并证明你的结论;

(3)连接BN,在 AEF 绕点A逆时针旋转过程中,当线段BN最大时,请直接写出 ADN 的面积.

来源:2020年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

来源:2020年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在等腰三角形 ABC 中, A = 120 ° AB = AC ,点 D E 分别在边 AB AC 上, AD = AE ,连接 BE ,点 M N P 分别为 DE BE BC 的中点.

(1)观察猜想.

图1中,线段 NM NP 的数量关系是     MNP 的大小为   

(2)探究证明

ΔADE 绕点 A 顺时针方向旋转到如图2所示的位置,连接 MP BD CE ,判断 ΔMNP 的形状,并说明理由;

(3)拓展延伸

ΔADE 绕点 A 在平面内自由旋转,若 AD = 1 AB = 3 ,请求出 ΔMNP 面积的最大值.

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知线段 AB = 2 MN AB 于点 M ,且 AM = BM P 是射线 MN 上一动点, E D 分别是 PA PB 的中点,过点 A M D 的圆与 BP 的另一交点 C (点 C 在线段 BD 上),连接 AC DE

(1)当 APB = 28 ° 时,求 B CM ̂ 的度数;

(2)求证: AC = AB

(3)在点 P 的运动过程中

①当 MP = 4 时,取四边形 ACDE 一边的两端点和线段 MP 上一点 Q ,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;

②记 AP 与圆的另一个交点为 F ,将点 F 绕点 D 旋转 90 ° 得到点 G ,当点 G 恰好落在 MN 上时,连接 AG CG DG EG ,直接写出 ΔACG ΔDEG 的面积之比.

来源:2017年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在直角坐标系中,过原点 O 及点 A ( 8 , 0 ) C ( 0 , 6 ) 作矩形 OABC 、连接 OB ,点 D OB 的中点,点 E 是线段 AB 上的动点,连接 DE ,作 DF DE ,交 OA 于点 F ,连接 EF .已知点 E A 点出发,以每秒1个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒.

(1)如图1,当 t = 3 时,求 DF 的长.

(2)如图2,当点 E 在线段 AB 上移动的过程中, DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 tan DEF 的值.

(3)连接 AD ,当 AD ΔDEF 分成的两部分的面积之比为 1 : 2 时,求相应的 t 的值.

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AM ΔABC 的中线, D 是线段 AM 上一点(不与点 A 重合). DE / / AB AC 于点 F CE / / AM ,连接 AE

(1)如图1,当点 D M 重合时,求证:四边形 ABDE 是平行四边形;

(2)如图2,当点 D 不与 M 重合时,(1)中的结论还成立吗?请说明理由.

(3)如图3,延长 BD AC 于点 H ,若 BH AC ,且 BH = AM

①求 CAM 的度数;

②当 FH = 3 DM = 4 时,求 DH 的长.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 为圆 O 的直径, C 为圆 O 上一点, D BC 延长线一点,且 BC = CD CE AD 于点 E

(1)求证:直线 EC 为圆 O 的切线;

(2)设 BE 与圆 O 交于点 F AF 的延长线与 CE 交于点 P ,已知 PCF = CBF PC = 5 PF = 4 ,求 sin PEF 的值.

来源:2018年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)操作发现:如图①,小明画了一个等腰三角形 ABC ,其中 AB = AC ,在 ΔABC 的外侧分别以 AB AC 为腰作了两个等腰直角三角形 ABD ACE ,分别取 BD CE BC 的中点 M N G ,连接 GM GN .小明发现了:线段 GM GN 的数量关系是  ;位置关系是  

(2)类比思考:

如图②,小明在此基础上进行了深入思考.把等腰三角形 ABC 换为一般的锐角三角形,其中 AB > AC ,其它条件不变,小明发现的上述结论还成立吗?请说明理由.

(3)深入研究:

如图③,小明在(2)的基础上,又作了进一步的探究.向 ΔABC 的内侧分别作等腰直角三角形 ABD ACE ,其它条件不变,试判断 ΔGMN 的形状,并给与证明.

来源:2018年山东省淄博市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径作圆 O ,分别交 BC 于点 D ,交 CA 的延长线于点 E ,过点 D DH AC 于点 H ,连接 DE 交线段 OA 于点 F

(1)求证: DH 是圆 O 的切线;

(2)若 A EH 的中点,求 EF FD 的值;

(3)若 EA = EF = 1 ,求圆 O 的半径.

来源:2017年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学三角形中位线定理解答题