优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 矩形的性质 / 解答题
初中数学

如图一,在射线的一侧以为一条边作矩形,点是线段上一动点(不与点重合),连结,过点的垂线交射线于点,连接

(1)求的大小;

(2)问题探究:动点在运动的过程中,

①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.

的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.

(3)问题解决:

如图二,当动点运动到的中点时,的交点为的中点为,求线段的长度.

来源:2019年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形OABC纸片中,OA=7,OC=5,DBC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线ly=﹣x+7上时,记为点EF,当点C的对应点落在边OA上时,记为点G

(1)求点EF的坐标;

(2)求经过EFG三点的抛物线的解析式;

(3)当点C的对应点落在直线l上时,求CD的长;

(4)在(2)中的抛物线上是否存在点P,使以EFP为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

来源:2016年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中,矩形 EFGH 的一边 EF AB 上,顶点 G H 分别在 BC AC 上, CD 是边 AB 上的高, CD GH 于点 I .若 CI = 4 HI = 3 AD = 9 2 .矩形 DFGI 恰好为正方形.

(1)求正方形 DFGI 的边长;

(2)如图2,延长 AB P .使得 AC = CP ,将矩形 EFGH 沿 BP 的方向向右平移,当点 G 刚好落在 CP 上时,试判断移动后的矩形与 ΔCBP 重叠部分的形状是三角形还是四边形,为什么?

(3)如图3,连接 DG ,将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形 DF ' G ' I ' ,正方形 DF ' G ' I ' 分别与线段 DG DB 相交于点 M N ,求 ΔMNG ' 的周长.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知: Rt Δ EFP 和矩形 ABCD 如图①摆放(点 P 与点 B 重合),点 F B ( P ) C 在同一直线上, AB = EF = 6 cm BC = FP = 8 cm EFP = 90 ° .如图②, ΔEFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm / s EP AB 交于点 G ;同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm / s .过点 Q QM BD ,垂足为 H ,交 AD 于点 M ,连接 AF PQ ,当点 Q 停止运动时, ΔEFP 也停止运动.设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, PQ / / BD

(2)设五边形 AFPQM 的面积为 y ( c m 2 ) ,求 y t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形AFPQM : S 矩形ABCD = 9 : 8 ?若存在,求出 t 的值;若不存在,请说明理由.

(4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2017年山东省青岛市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,已知点 B 的坐标为 ( 6 , 4 )

(1)请用直尺(不带刻度)和圆规作一条直线 AC ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使 ABC = 90 ° ΔABC ΔAOC 的面积相等.(作图不必写作法,但要保留作图痕迹. )

(2)问:(1)中这样的直线 AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 AC ,并写出与之对应的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )

(1)根据以上操作和发现,求 CD AD 的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: HPC = 90 °

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)

来源:2018年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是矩形, E F 分别是线段 AD BC 上的点,点 O EF BD 的交点.若将 ΔBED 沿直线 BD 折叠,则点 E 与点 F 重合.

(1)求证:四边形 BEDF 是菱形;

(2)若 ED = 2 AE AB AD = 3 3 ,求 EF BD 的值.

来源:2021年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 为矩形, E AB 延长线上的一点.

(1)若 AC = EC ,如图1,求证:四边形 BECD 为平行四边形;

(2)若 AB = AD ,点 F AB 上的点, AF = BE EG AC 于点 G ,如图2,求证: ΔDGF 是等腰直角三角形.

来源:2021年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形 ABCD 的四边 BA CB DC AD 分别延长至 E F G H ,使得 AE = CG BF = DH ,连接 EF FG GH HE

(1)求证:四边形 EFGH 为平行四边形;

(2)若矩形 ABCD 是边长为1的正方形,且 FEB = 45 ° tan AEH = 2 ,求 AE 的长.

来源:2017年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 BD 是矩形 ABCD 的对角线.

(1)用直尺和圆规作线段 BD 的垂直平分线,分别交 AD BC E F (保留作图痕迹,不写作法和证明).

(2)连接 BE DF ,问四边形 BEDF 是什么四边形?请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F BC 的延长线上,且 BE = CF

求证:(1) ΔABE ΔDCF

(2)四边形 AEFD 是平行四边形.

来源:2021年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AC = 2 AB ,将矩形 ABCD 绕点 A 旋转得到矩形 AB ' C ' D ' ,使点 B 的对应点 B ' 落在 AC 上, B ' C ' AD 于点 E ,在 B ' C ' 上取点 F ,使 B ' F = AB

(1)求证: AE = C ' E

(2)求 FB B ' 的度数.

(3)已知 AB = 2 ,求 BF 的长.

来源:2018年四川省南充市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 在平面直角坐标系的第一象限内, BC x 轴平行, AB = 1 ,点 C 的坐标为 ( 6 , 2 ) E AD 的中点;反比例函数 y 1 = k x ( x > 0 ) 图象经过点 C 和点 E ,过点 B 的直线 y 2 = ax + b 与反比例函数图象交于点 F ,点 F 的纵坐标为4.

(1)求反比例函数的解析式和点 E 的坐标;

(2)求直线 BF 的解析式;

(3)直接写出 y 1 > y 2 时,自变量 x 的取值范围.

来源:2018年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题