在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;
( 1 )根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组;
( 2 )请在图中的三个平行四边形中画出满足小强分割方法的直线;
( 3 )由上述实验操作过程,你发现所画的两条直线有什么规律?
如图,把长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在点C′的位置上.
⑴若∠1=50°,求∠2、∠3的度数;
⑵若AB=7,DE=8,求CF的长度.
如图,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
⑴求证:梯形ABCD是等腰梯形.
⑵若∠BDC=30°,AD=5,求CD的长.
已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上点,CE="CF."
(1)求证:△BEC≌△DFC;
(2)若∠BEC=60°,求∠EFD的度数
如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形。求证:四边形ABCD是矩形.
如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=AC,求该梯形各内角的度数.
如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.
如图,一张长方形纸片宽AB=8 cm,长BC=10 cm.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.
如图,在梯形ABCD中,AD∥BC, BC=30cm,动点M从A点开始沿AD边向D以1cm/s的速度运动,动点N从C点开始沿CB边向B以3cm/s的速度运动,M、N分别从A、C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t s,t为何值时,四边形ABNM是平行四边形?
试题篮
()