优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 切线的性质 / 解答题
初中数学

如图,在 ΔABC 中, ACB = 90 ° ,点 O BC 边上一点,以点 O 为圆心, OB 长为半径的圆与边 AB 相交于点 D ,连接 DC ,当 DC O 的切线时.

(1)求证: DC = AC

(2)若 DC = DB O 的半径为1,请直接写出 DC 的长为   

来源:2020年辽宁省沈阳市中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 内接于 O AB O 的直径, AD = CD

(1)如图1,求证 ABC = 2 ACD

(2)过点 D O 的切线,交 BC 延长线于点 P (如图 2 ) .若 tan CAB = 5 12 BC = 1 ,求 PD 的长.

来源:2020年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C ,点 D O 上, AC ̂ = CD ̂ AD BC 相交于点 E AF O 相切于点 A ,与 BC 延长线相交于点 F

(1)求证: AE = AF

(2)若 EF = 12 sin ABF = 3 5 ,求 O 的半径.

来源:2020年辽宁省鞍山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, DB O 的圆心,交 O 于点 A B DC O 的切线,点 C 是切点,已知 D = 30 ° DC = 3

(1)求证: ΔBOC ΔBCD

(2)求 ΔBCD 的周长.

来源:2020年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的弦,外一点,于点,交于点,且

(1)判断直线的位置关系,并说明理由;

(2)若,求图中阴影部分的面积.

来源:2020年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, OM O 的半径,过 M 点作 O 的切线 AB ,且 MA = MB OA OB 分别交 O C D .求证: AC = BD

来源:2020年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC AB = 2 3 a ABC = 60 ,过点 B O 与边 AB BC 分别交于 E F 两点. OG BC ,垂足为 G OG = a .连接 OB OE OF

(1)若 BF = 2 a ,试判断 ΔBOF 的形状,并说明理由;

(2)若 BE = BF ,求证: O AD 相切于点 A

来源:2020年湖北省宜昌市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC ABC 的平分线与 O 交于点 D ,与 AC 交于点 E ,连接 CD 并延长与 O 过点 A 的切线交于点 F ,记 BAC = α

(1)如图1,若 α = 60 °

①直接写出 DF DC 的值为   

②当 O 的半径为2时,直接写出图中阴影部分的面积为   

(2)如图2,若 α < 60 ° ,且 DF DC = 2 3 DE = 4 ,求 BE 的长.

来源:2020年湖北省孝感市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 O AC 上,以 OA 为半径的半圆 O AB 于点 D ,交 AC 于点 E ,过点 D 作半圆 O 的切线 DF ,交 BC 于点 F

(1)求证: BF = DF

(2)若 AC = 4 BC = 3 CF = 1 ,求半圆 O 的半径长.

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 为直径的 O AC 于点 D AE 与过点 D 的切线互相垂直,垂足为 E

(1)求证: AD 平分 BAE

(2)若 CD = DE ,求 sin BAC 的值.

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 为半圆 O 的直径, C 为半圆 O 上一点, AD 与过点 C 的切线垂直,垂足为 D AD 交半圆 O 于点 E

(1)求证: AC 平分 DAB

(2)若 AE = 2 DE ,试判断以 O A E C 为顶点的四边形的形状,并说明理由.

来源:2020年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AC O 的直径, AP O 的切线, M AP 上一点,过点 M 的直线与 O 交于点 B D 两点,与 AC 交于点 E ,连接 AB AD AB = BE

(1)求证: AB = BM

(2)若 AB = 3 AD = 24 5 ,求 O 的半径.

来源:2020年湖北省荆门市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c 经过点 A ( - 1 , 0 ) 和点 C ( 0 , 3 ) x 轴的另一交点为点 B ,点 M 是直线 BC 上一动点,过点 M MP / / y 轴,交抛物线于点 P

(1)求该抛物线的解析式;

(2)在抛物线上是否存在一点 Q ,使得 ΔQCO 是等边三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由;

(3)以 M 为圆心, MP 为半径作 M ,当 M 与坐标轴相切时,求出 M 的半径.

来源:2020年贵州省遵义市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的外接圆,其切线与直径的延长线相交于点,且

(1)求的度数;

(2)若,求的半径.

来源:2020年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 上, AD 与过点 C 的切线互相垂直,垂足为 D .连接 BC 并延长,交 AD 的延长线于点 E

(1)求证: AE = AB

(2)若 AB = 10 BC = 6 ,求 CD 的长.

来源:2020年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学切线的性质解答题