优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形的应用
初中数学

一座楼梯的示意图如图所示, BC 是铅垂线, CA 是水平线, BA CA 的夹角为 θ .现要在楼梯上铺一条地毯,已知 CA = 4 米,楼梯宽度1米,则地毯的面积至少需要 (    )

A. 4 sin θ 2 B. 4 cos θ 2 C. ( 4 + 4 tan θ ) 2 D. ( 4 + 4 tan θ ) 2

来源:2016年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面 A B 两处均探测出建筑物下方 C 处有生命迹象,已知在 A 处测得探测线与地面的夹角为 30 ° ,在 B 处测得探测线与地面的夹角为 60 ° ,求该生命迹象 C 处与地面的距离.(结果精确到0.1米,参考数据: 2 1 . 41 3 1 . 73 )

来源:2017年广西贺州市中考数学试卷
  • 题型:未知
  • 难度:未知

人字梯为现代家庭常用的工具(如图).若 AB AC 的长都为 2 m ,当 α = 50 ° 时,人字梯顶端离地面的高度 AD     m .(结果精确到 0 . 1 m ,参考依据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 )

来源:2020年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂 AC = 40 cm ,灯罩 CD = 30 cm ,灯臂与底座构成的 CAB = 60 ° CD 可以绕点 C 上下调节一定的角度.使用发现:当 CD 与水平线所成的角为 30 ° 时,台灯光线最佳.现测得点 D 到桌面的距离为 49 . 6 cm .请通过计算说明此时台灯光线是否为最佳?(参考数据: 3 1 . 73 )

来源:2019年甘肃省临夏州中考数学试卷
  • 题型:未知
  • 难度:未知

如图是小红在一次放风筝活动中某时段的示意图,她在 A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成 30 ° 角,线段 A A 1 表示小红身高1.5米.

(1)当风筝的水平距离 AC = 18 米时,求此时风筝线 AD 的长度;

(2)当她从点 A 跑动 9 2 米到达点 B 处时,风筝线与水平线构成 45 ° 角,此时风筝到达点 E 处,风筝的水平移动距离 CF = 10 3 米,这一过程中风筝线的长度保持不变,求风筝原来的高度 C 1 D

来源:2018年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手 AB 及两根与 FG 垂直且长为1米的不锈钢架杆 AD BC (杆子的底端分别为 D C ) ,且 DAB = 66 . 5 ° .(参考数据: cos 66 . 5 ° 0 . 40 sin 66 . 5 ° 0 . 92 )

(1)求点 D 与点 C 的高度差 DH

(2)求所有不锈钢材料的总长度(即 AD + AB + BC 的长,结果精确到0.1米)

来源:2016年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是某中学教学楼的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 35 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B C 之间的距离(结果保留一位小数).(参考数据: sin 35 ° 0 . 6 cos 35 ° 0 . 8 2 1 . 4 )

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, 3 1 . 732

来源:2016年湖南省娄底市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,为了测量某条河的宽度,现在河边的一岸边任意取一点 A ,又在河的另一岸边取两点 B C 测得 α = 30 ° β = 45 ° ,量得 BC 长为100米.求河的宽度(结果保留根号).

来源:2017年四川省宜宾市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是第七届国际数学教育大会 ( ICME ) 会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 OABC .若 AB = BC = 1 AOB = α ,则 O C 2 的值为 (    )

A.

1 sin 2 α + 1

B.

sin 2 α + 1

C.

1 cos 2 α + 1

D.

cos 2 α + 1

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

拓展小组研制的智能操作机器人,如图1,水平操作台为 l ,底座 AB 固定,高 AB 50 cm ,连杆 BC 长度为 70 cm ,手臂 CD 长度为 60 cm .点 B C 是转动点,且 AB BC CD 始终在同一平面内.

(1)转动连杆 BC ,手臂 CD ,使 ABC = 143 ° CD / / l ,如图2,求手臂端点 D 离操作台 l 的高度 DE 的长(精确到 1 cm ,参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

(2)物品在操作台 l 上,距离底座 A 110 cm 的点 M 处,转动连杆 BC ,手臂 CD ,手臂端点 D 能否碰到点 M ?请说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

2021年,达州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为 30 ° 的河床斜坡边,斜坡 BC 长为48米,在点 D 处测得桥墩最高点 A 的仰角为 35 ° CD 平行于水平线 BM CD 长为 16 3 米,求桥墩 AB 的高(结果保留1位小数). ( sin 35 ° 0 . 57 cos 35 ° 0 . 82 tan 35 ° 0 . 70 3 1 . 73 )

来源:2021年四川省达州市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是疫情期间测温员用"额温枪"对小红测温时的实景图,图2是其侧面示意图,其中枪柄 BC 与手臂 MC 始终在同一直线上,枪身 BA 与额头保持垂直.量得胳膊 MN = 28 cm MB = 42 cm ,肘关节 M 与枪身端点 A 之间的水平宽度为 25 . 3 cm (即 MP 的长度),枪身 BA = 8 . 5 cm

(1)求 ABC 的度数;

(2)测温时规定枪身端点 A 与额头距离范围为 3 ~ 5 cm .在图2中,若测得 BMN = 68 . 6 ° ,小红与测温员之间距离为 50 cm .问此时枪身端点 A 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)

(参考数据: sin 66 . 4 ° 0 . 92 cos 66 . 4 ° 0 . 40 sin 23 . 6 ° 0 . 40 2 1 . 414 )

来源:2021年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图. AB CD 是两根相同长度的活动支撑杆,点 O 是它们的连接点, OA = OC h ( cm ) 表示熨烫台的高度.

(1)如图 2 - 1 .若 AB = CD = 110 cm AOC = 120 ° ,求 h 的值;

(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 120 cm 时,两根支撑杆的夹角 AOC 74 ° (如图 2 - 2 ) .求该熨烫台支撑杆 AB 的长度(结果精确到 1 cm )

(参考数据: sin 37 ° 0 . 6 cos 37 ° 0 . 8 sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,有一个三角形的钢架 ABC A = 30 ° C = 45 ° AC = 2 ( 3 + 1 ) m .请计算说明,工人师傅搬运此钢架能否通过一个直径为 2 . 1 m 的圆形门?

来源:2018年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用试题