优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一元二次方程的最值 / 解答题
初中数学

解方程:2x2-9x+8=0.

  • 题型:未知
  • 难度:未知

某软件商店经销一种热门益智游戏软件,进货成本为每盘8元,若按每盘10元销售,每天能售出200盘;但由于货源紧缺,商店决定采用尽量提高软件售价减少销售量的办法增加利润,如果这种软件每盘售价提高2元其销售量就减少40盘,问应将每盘售价定为多少元时,才能使每天利润为640元?这时的销售量应为多少?

  • 题型:未知
  • 难度:未知

(1)2x2-9x+8=0(用公式法)         
(2)3x2-4x-6=0(配方法解)
(3)(x-2)2=(2x+3)2(用合适的方法)  
(4)(5x-1)2-3(5x-1)=0(用合适的方法)

  • 题型:未知
  • 难度:未知

有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:
(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?
(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?

  • 题型:未知
  • 难度:未知

解方程
(1)(x-1)2=4
(2)3x2+5(2x+1)=0
(3)x2-3x-4=0
(4)(y+2)2=(3y-1)2

  • 题型:未知
  • 难度:未知

对x,y定义一种新运算T,规定:(其中均为非零常数),这里等式右边是通常的四则运算,例如:
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求的值;
②若关于的方程T有实数解,求实数的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则应满足怎样的关系式?

  • 题型:未知
  • 难度:未知

为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出1600盒,每盒售价每提高1元,每天要少卖出20盒.
(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(2)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?

  • 题型:未知
  • 难度:未知

我校初2016级举行了初三体育测试,现随机抽取了部分学生的成绩为样本,按 A(优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:

(1)本次调查共随机抽取了_______名学生,其中∠1=        
(2)将条形统计图在图中补充完整;
(3)初2016级目前举行了四次体育测试.小新同学第一次成绩为25分,第三次测试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.

  • 题型:未知
  • 难度:未知

某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.
(1)该公司2013年至2015年盈利的年增长率?
(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?

  • 题型:未知
  • 难度:未知

已知x1,x2是一元二次方程的两个实数根.
(1)求实数m的取值范围;
(2)如果x1,x2满足不等式,且m为整数,求m的值.

  • 题型:未知
  • 难度:未知

先化简,再求值:,其中是2x2-2x-7=0的根.

  • 题型:未知
  • 难度:未知

解方程:
(1) (用配方法解)
(2)3x(x-1)=2-2x(用适当的方法解)

  • 题型:未知
  • 难度:未知

请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程,我们可以将视为一个整体,然后设,则原方程可化为 ①
解得,当y=1时,,∴
当y=4时,,∴,∴原方程的解为= =-==-
解答问题:
(1)填空:在由原方程得到方程①的过程中,利用_________法达到了降次的目的,体现了_________的数学思想.
(2)解方程

  • 题型:未知
  • 难度:未知

解方程:
(1);                      
(2)

  • 题型:未知
  • 难度:未知

初中数学一元二次方程的最值解答题