已知抛物线,
(1)若,,求该抛物线与轴公共点的坐标;
(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;
(3)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,有几个,证明你的结论;若没有,阐述理由.
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片沿过T点的直线折叠,使点A落在射线AB上(记为点A′),折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)直接写出∠OAB的度数;
(2)当纸片重叠部分的图形是四边形时,直接写出t的取值范围;
(3)求S关于t的解析式及S的最大值.
已知二次函数y=x2-(2a+3)x+4a+2与x轴交于A、B两点,与y轴交于点C,并且点A在点B左侧,位于原点两侧. 若S△ABC的面积为3,求a的值.
某数码卖场销售某种品牌电脑,对于100~500台的大客户订单实行降价促销,每台电脑的售价y(元/台)与数量x(台)的函数关系可以由图中线段AB来表示,每台电脑的进货及运输等成本总共为2250元。
(1)写出每台电脑的售价y与台数x的函数关系式:________________;自变量的取值范围是____________且x为整数;
(2)若一次政府采购的订单使该卖场共获利12万元,不计其它成本消耗,试求出这次政府采购了多少台电脑;
(3)求出每份大客户订单的总获利z(元)与购买数量x(台)之间的函数关系式。当一份订单的购买数量为多少台时,卖场获利最多?
已知二次函数的图象与x轴交于点A(4,0)、点B,与y轴交于点C。
(1)求此二次函数的解析式及点B的坐标;
(2)点P从点A出发以每秒1个单位的速度沿线段AO向O点运动,到达点O后停止运动,过点P作PQ//AC交OC于点Q,将四边形PQCA沿PQ翻折,得到四边形,设点P的运动时间为t。
①当t为何值时,点恰好落在二次函数的图象的对称轴上;
②设四边形落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出当t为何值时S的值最大。
已知二次函数y= x2 +4x+3.
(1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)写出当x为何值时,y>0.
已知抛物线
(1)求证:不论k为任何实数,抛物线与轴总有两个交点;
(2)若反比例函数的图象与的图象关于y轴对称,又与抛物线交于点A(n,-3),求抛物线的解析式;
(3)若点P是(2)中抛物线上的一点,且点P到两坐标轴的距离相等,求点P的坐标.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设李明每月获得利润为w(元)(,当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,并且又要减少库存,那么销售单价应定为多少元?
如图,在直角坐标系中,O为坐标原点,二次函数的图象与轴的正半轴交于点,与轴的正半轴交交于点,且.设此二次函数图象的顶点为。
(1)求这个二次函数的解析式;
(2)将绕点顺时针旋转后,点落到点的位置.将上述二次函数图象沿轴向上或向下平移后经过点.请直接写出点的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与轴的交点为,顶点为.点在平移后的二次函数图象上,且满足的面积是面积的倍,求点的坐标。
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件。
(1)求商场经营该商品原来一天可获利润多少元?
(2)若商场经营该商品一天要获得最大利润,则每件商品应降价多少元?
经过原点和(4,0)的两条抛物线,,顶点分别为,且都在第1象限,连结交轴于,且.
分别求出抛物线和的解析式;
点C是抛物线的轴上方的一动点,作轴于,交抛物线于D,试判断和的数量关系,并说明理由;
直线,交抛物线于M,交抛物线于N,是否存在以点为顶点的四边形是平行四边形,若存在,求出的值;若不存在,说明理由..
如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
⑴求抛物线的解析式及顶点D的坐标;
判断△ABC的形状,证明你的结论;
点M(m,0)是x轴上的一个动点, 当CM+DM的值最小时,求m的值.
在数学活动课上,同学们用一根长为1米的细绳围矩形.
)小明围出了一个面积为600㎝2的矩形,请你算一算,她围成的矩形的长和宽各是多少?
小颖想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积
如图,四边形ABCD为矩形,AB=4,AD=3,动点M从D点出发,以1个单位/秒的速度沿DA向终点A运动,同时动点N从A点出发,以2个单位/秒的速度沿AB向终点B运动.当其中一点到达终点时,运动结束.过点N作NP⊥AB,交AC于点P1连结MP.已知动点运动了x秒.
(1)请直接写出PN的长;(用含x的代数式表示)
(2)试求△MPA的面积S与时间x秒的函数关系式,写出自变量x的取值范围,并求出S的最大值;
试题篮
()