如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为 ;
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:
(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;
(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.
如图,长方形纸片中,AB=10,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上.
图(2)
(1)如图(1),当折痕的另一端在边上且AE=5时,求AF的长
(2)如图(2),当折痕的另一端在边上且BG=13时,求AF的长.
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:
(1);
(2).
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16.
(1)求AB的长;
(2)问△ABC是直角三角形吗?请说明理由.
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:DE=EF;
(2)当∠A=50°时,求∠DEF的度数;
如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,
(1)试说明:△FBD≌△ACD;
(2)延长BF交AC于E,且BE⊥AC,试说明:CE=
已知,如图,四边形ABCD,∠A=∠B=Rt∠
(1)用直尺和圆规,在线段AB上找一点E,使得EC=ED,连接EC,ED(不写作法,保留作图痕迹)
(2)在(1)的图形中,若∠ADE=∠BEC,且CE=3,BC=,求AD的长.
如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).
(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?
(2)当O<x<2时,AD是否能平分△PQD的面积?若能,说出理由;
(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,且DE=DF.
(1)求证:△ADE≌△CDF;
(2)判断四边形ABCD的形状,并说明理由.
如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.
如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.
(1)若Q的运动速度与P的速度相等,经过多少秒后?△BPD与△CQP全等.
(2)若Q的速度与点P的速度不相等,当Q的速度为多少时,能够使△BPD与△CQP全等?
试题篮
()