口袋中有4个分别写着字母A、B、C、D的小球,这些小球除字母外都相同,现在随机抽取一个小球后放回,再随机抽取一个小球.
(1)用画树状的方法表示所有可能的结果;
(2)求两次取得相同字母的概率.
为了了解温州市中学生开展研究性学习的情况,抽查了某中学九年级甲、乙两班的部分学生,了解他们在一个月内参加研究性学习的情况,结果统计如下:
(1)在这次抽查中甲班被抽查了 人,乙班被抽查了 人;
(2)被抽查的学生中,甲班学生参加研究性学习的平均次数为 次,中位数是 次,乙班学生参加研究性学习的平均次数为 次,中位数是 次;
(3)根据以上信息,用你学过的统计知识,推测甲、乙两班在开展研究性学习方面哪个班级更好一些?
已知二次函数y=x2+2x-3.
(1)求此二次函数的图象与x轴的交点坐标;
(2)此二次函数的图象经怎样平移,使顶点变为A(3,0),请你描述平移的过程.
七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:
三角形的三条高(或三条高所在直线)相交于一点.
其实,有很多八年级、九年级的问题均可用此结论解决.
【运用】如图,已知:△ABC的高AD与高BE相交于点F,且∠ABC=45°,过点F作FG∥BC交AB于点G,求证:FG+CD=BD.
小方同学在解答此题时,利用了上述结论,她的方法如下:
连接CF并延长,交AB于点M,
∵△ABC的高AD与高BE相交于点F,
∴CM为△ABC的高.
(请你在下面的空白处完成小方的证明过程.)
【操作】如图AB是圆的直径,点C在圆内,请仅用无刻度的直尺画出△ABC中AB边上的高.
如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣4,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得?QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)设此抛物线与直线y=﹣x在第二象限交于点D,平行于y轴的直线x=m(-1-<m<0)与抛物线交于点M,与直线y=﹣x交于点N,连接BM、CM、NC、NB,是否存在m的值,使四边形BNCM的面积S最大?若存在,请求出m的值,若不存在,请说明理由.
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,CD=,求∠BAC的度数;
(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于65元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与涨价x(元/箱)之间的函数关系式;
(2)求当每箱苹果的销售价为多少元,批发商平均每天的销售利润W(元)可以获得最大?
如图,AB为的直径,AB=AC,BC交于点D,AC交于点E.
(1)求证:BD=CD;
(2)若AB=8,∠BAC=45°,求阴影部分的面积.
李军同学早晨起来跑步,他从自家向东跑了2千米到达谢彬家,继续向东跑了1.5千米到达红红家,然后向西跑了4.5千米到达了学校,最后回到家.请按要求完成下列各题.
(1)以李军家为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你画出数轴,并在数轴上表示出李军、谢彬、红红家及学校的位置及各位置表示的有理数;
(2)谢彬家距学校多远?
(3)李军一共跑了多少千米?
如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S.
(1)过点B作BE⊥x轴于点E,则BE= ,用含t的代数式表示PC= .
(2)求S与t的函数关系.
(3)当S=20时,直接写出线段AB与CP的长.
试题篮
()