某种商品每件进价为20元,调查表明:在某段时间内若以每件 元 ,且 为整数)出售,可卖出 件,若使利润最大,则每件商品的售价应为 元.
如图,在 中, , , .动点 从点 开始沿边 向点 以 的速度移动,动点 从点 开始沿边 向点 以 的速度移动.若 , 两点分别从 , 两点同时出发,在运动过程中, 的最大面积是
A. B. C. D.
草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量 (千克)与销售单价 (元)符合一次函数关系,如图是 与 的函数关系图象.
(1)求 与 的函数解析式(也称关系式);
(2)设该水果销售店试销草莓获得的利润为 元,求 的最大值.
已知:如图,四边形 , , , , , ,动点 从点 开始沿 边匀速运动,动点 从点 开始沿 边匀速运动,它们的运动速度均为 .点 和点 同时出发,以 、 为边作平行四边形 ,设运动的时间为 , .
根据题意解答下列问题:
(1)用含 的代数式表示 ;
(2)设四边形 的面积为 ,求 与 的函数关系式;
(3)当 时,求 的值;
(4)在运动过程中,是否存在某一时刻 ,使点 在 的平分线上?若存在,求出 的值;若不存在,请说明理由.
某公司投入研发费用80万元 万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量 销售量),第一年该产品正式投产后,生产成本为6元 件.此产品年销售量 (万件)与售价 (元 件)之间满足函数关系式 .
(1)求这种产品第一年的利润 (万元)与售价 (元 件)满足的函数关系式;
(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)在(2)的条件下,第二年,该公司将第一年的利润20万元 万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元 件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润 至少为多少万元.
一列自然数0,1,2,3, ,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是
A.原数与对应新数的差不可能等于零
B.原数与对应新数的差,随着原数的增大而增大
C.当原数与对应新数的差等于21时,原数等于30
D.当原数取50时,原数与对应新数的差最大
知识背景
当 且 时,因为 ,所以 ,从而 (当 时取等号).
设函数 ,由上述结论可知:当 时,该函数有最小值为 .
应用举例
已知函数为 与函数 ,则当 时, 有最小值为 .
解决问题
(1)已知函数 与函数 ,当 取何值时, 有最小值?最小值是多少?
(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为 天,则当 取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
如图所示,已知 中, , 边上的高 , 为 上一点, ,交 于点 ,交 于点 ,设点 到边 的距离为 .则 的面积 关于 的函数图象大致为
A.B.
C.D.
如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度 (单位: 与飞行时间 (单位: 之间具有函数关系 ,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为 时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
工人师傅用一块长为 ,宽为 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为 时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并在容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
如图,在 中, , , ,点 从点 沿 向点 以 的速度运动,同时点 从点 沿 向点 以 的速度运动(点 运动到点 停止),在运动过程中,四边形 的面积最小值为
A. B. C. D.
已知: 和矩形 如图①摆放(点 与点 重合),点 , , 在同一直线上, , , .如图②, 从图①的位置出发,沿 方向匀速运动,速度为 , 与 交于点 ;同时,点 从点 出发,沿 方向匀速运动,速度为 .过点 作 ,垂足为 ,交 于点 ,连接 , ,当点 停止运动时, 也停止运动.设运动时间为 ,解答下列问题:
(1)当 为何值时, ?
(2)设五边形 的面积为 ,求 与 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由.
(4)在运动过程中,是否存在某一时刻 ,使点 在线段 的垂直平分线上?若存在,求出 的值;若不存在,请说明理由.
青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨 .下表是去年该酒店豪华间某两天的相关记录:
淡季 |
旺季 |
|
未入住房间数 |
10 |
0 |
日总收入(元 |
24000 |
40000 |
(1)该酒店豪华间有多少间?旺季每间价格为多少元?
(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?
足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度 (单位: 与足球被踢出后经过的时间 (单位: 之间的关系如下表:
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
|
0 |
8 |
14 |
18 |
20 |
20 |
18 |
14 |
|
下列结论:①足球距离地面的最大高度为 ;②足球飞行路线的对称轴是直线 ;③足球被踢出 时落地;④足球被踢出 时,距离地面的高度是 .其中正确结论的个数是
A.1B.2C.3D.4
试题篮
()