优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 变量间的相关关系
高中数学

(本小题满分12分)是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:

时间
周一
周二
周三
周四
周五
车流量(万辆)





的浓度(微克/立方米)





 
(1)根据上表数据,请在下列坐标系中画出散点图;

(2)根据上表数据,用最小二乘法求出关于的线性回归方程
(3)若周六同一时间段车流量是万辆,试根据(2)求出的线性回归方程预测,此时的浓度为多少(保留整数)?

  • 题型:未知
  • 难度:未知

科研人员研究某物质的溶解度与温度之间的关系,得到如下表部分数据,则其回归直线方程为          ,其中).

温度(℃)
8
8.2
8.4
8.6
8.8
9
溶解度
90
84
83
80
75
68

 

  • 题型:未知
  • 难度:未知

[2013·福建高考]已知x与y之间的几组数据如下表:

x
1
2
3
4
5
6
y
0
2
1
3
3
4

假设根据上表数据所得线性回归直线方程为x+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是(  )
A. >b′,>a′        B. >b′,<a′
C. <b′,>a′        D. <b′,<a′

  • 题型:未知
  • 难度:未知

[2013·杭州模拟]在2013年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x和销售量y之间的一组数据如下表所示:

价格x(元)
9
9.5
10
10.5
11
销售量y(件)
11
10
8
6
5

 
由散点图可知,销售量y与价格x之间有较好的线性相关关系,且回归直线方程是=-3.2x+,则=(  )
A.-24       B.35.6        C.40.5        D.40

  • 题型:未知
  • 难度:未知

一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:的单位:)行驶至停止.在此期间汽车继续行驶的距离(单位:)是(   ).

A. B.
C. D.
  • 题型:未知
  • 难度:未知

已知x与y之间的一组数据如下,则y与x的线性回归方程为y=bx+a,必过点         

x
1
1
2
4
y
1
4
5
6

 

  • 题型:未知
  • 难度:未知

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法示得回归直线方程为

零件数(个)
10
20
30
40
50
加工时间
62
 
75
81
89

 
表中有一个数据模糊不清,经推断,该数据的值为             

  • 题型:未知
  • 难度:未知

以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积)的数据 ,若由资料可知呈线性相关关系。

试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为时的销售价格.
参考公式:

  • 题型:未知
  • 难度:未知

对于函数,部分的对应关系如下表:

数列满足:,且对于任意,点都在函数的图象上,则(   )

A.7539 B.7546 C.7549 D.7554
  • 题型:未知
  • 难度:未知

某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费.
(1)设每月用电度,应交电费元,写出关于的函数;
(2)已知小王家第一季度缴费情况如下:

月份
1
2
3
合计
缴费金额
87元
62元
45元8角
194元8角

 
问:小王家第一季度共用了多少度电?

  • 题型:未知
  • 难度:未知

下表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.

x(℃)
300
400
500
600
700
800
y(%)
40
50
55
60
67
70

 
(1)求y关于x的回归方程;
(2)估计水温度是1 000 ℃时,黄酮延长性的情况.
(可能用到的公式:,其中是对回归直线方程中系数按最小二乘法求得的估计值)

  • 题型:未知
  • 难度:未知

生产两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标





元件
8
12
40
32
8
元件
7
18
40
29
6

 
(Ⅰ)试分别估计元件、元件为正品的概率;
(Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下
(i)求生产5件元件所获得的利润不少于300元的概率;   
(ii)记为生产1件元件和1件元件所得的总利润,求随机变量的分布列和期望.

  • 题型:未知
  • 难度:未知

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下:

零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5

 
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?

  • 题型:未知
  • 难度:未知

设某中学的女生体重(kg)与身高(cm)具有线性相关关系,根据一组样本数,用最小二乘法建立的线性回归直线方程为,给出下列结论,则错误的是( )

A.具有正的线性相关关系
B.若该中学某女生身高增加1cm,则其体重约增加0.85kg
C.回归直线至少经过样本数据中的一个
D.回归直线一定过样本点的中心点
  • 题型:未知
  • 难度:未知

(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:

年份
2007
2008
2009
2010
2011
2012
2013
年份代号 
1
2
3
4
5
6
7
人均纯收入
2.9
3.3
3.6
4.4
4.8
5.2
5.9

 
(Ⅰ)求关于的线性回归方程;(已知b=0.5)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

  • 题型:未知
  • 难度:未知

高中数学变量间的相关关系试题