优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,矩形所在的平面和平面互相垂直,等腰梯形中,,分别为的中点,为底面的重心.

(1)求证:
(2)求证:

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,已知四边形是正方形,平面,//,,,,分别为,,的中点.
(Ⅰ)求证:平面FGH //平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

在四棱锥中,平面,底面是梯形,

(1)求证:平面平面
(2)设为棱上一点,,试确定的值使得二面角

  • 题型:未知
  • 难度:未知

如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB;      ②OC⊥平面PAC;
③MO∥平面PAC;      ④平面PAC⊥平面PBC.
其中正确的命题是( ).

A.①②       B.①③       C.③④        D.②④

  • 题型:未知
  • 难度:未知

如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

(1)求证:
(2)求二面角的平面角的正弦值.

  • 题型:未知
  • 难度:未知

如图,在空间四边形中,点分别是边的中点,分别是边上的点,且,则( )

A.互相平行
B.异面
C.的交点可能在直线上,也可能不在直线
D.的交点一定在直线
  • 题型:未知
  • 难度:未知

如图,已知四棱锥,底面为菱形,平面分别是的中点.

(Ⅰ)证明:
(Ⅱ)若,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱中,,点的中点.

(1)求证:
(2)求证:平面
(3)求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题