(本小题满分14分)如图,已知四边形是正方形,平面,//,,,,分别为,,的中点.
(Ⅰ)求证:平面FGH //平面;
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.
如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:
①PA∥平面MOB; ②OC⊥平面PAC;
③MO∥平面PAC; ④平面PAC⊥平面PBC.
其中正确的命题是( ).
A.①② B.①③ C.③④ D.②④
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.
(1)求证:;
(2)求二面角的平面角的正弦值.
如图,在空间四边形中,点分别是边的中点,分别是边上的点,且==,则( )
A.与互相平行 |
B.与异面 |
C.与的交点可能在直线上,也可能不在直线上 |
D.与的交点一定在直线上 |
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角的余弦值.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
试题篮
()