优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

  • 题型:未知
  • 难度:未知

是两条不同的直线,是三个不同的平面,有以下四个命题:
  ②   ③   ④
其中正确的命题是( )

A.①④ B.②③ C.①③ D.②④
  • 题型:未知
  • 难度:未知

如图,四棱柱中,底面ABCD是矩形,且,若O为AD的中点,且

(1)求证:平面ABCD;
(2)线段BC上是否存在一点P,使得二面角?若存在,求出BP的长;不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图所示,在四边形中,,将四边形沿对角线折成四面体,使平面平面,则下列结论正确的是         

(1)
(2)
(3)与平面所成的角为;   
(4)四面体的体积为

  • 题型:未知
  • 难度:未知

如图,在三棱柱中,底面,点的中点. 

(Ⅰ)求证:
(Ⅱ)求证:∥平面
(Ⅲ)设,在线段上是否存在点,使得?若存在,确定点的位置;                         若不存在,说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,已知正三棱柱各棱长都是4,的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当时,求证:
(Ⅱ)设二面角的大小为,求的最小值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,,E为PD的中点.

求证:(1)平面PBC;
(2)平面ACE.

  • 题型:未知
  • 难度:未知

如图,矩形所在的平面,分别是的中点.

(1)求证:平面
(2)求证:

  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题