如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.
如图,四棱柱中,底面ABCD是矩形,且,,,若O为AD的中点,且.
(1)求证:平面ABCD;
(2)线段BC上是否存在一点P,使得二面角为?若存在,求出BP的长;不存在,说明理由.
如图所示,在四边形中,,将四边形沿对角线折成四面体,使平面平面,则下列结论正确的是 .
(1);
(2);
(3)与平面所成的角为;
(4)四面体的体积为.
如图,在三棱柱中,底面,,点是的中点.
(Ⅰ)求证:;
(Ⅱ)求证:∥平面.
(Ⅲ)设,,在线段上是否存在点,使得?若存在,确定点的位置; 若不存在,说明理由.
(本小题满分12分)
如图,已知正三棱柱各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当时,求证:;
(Ⅱ)设二面角的大小为,求的最小值.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
试题篮
()