如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
如图,在直四棱柱ABCD﹣A1B1C1D1中, E,F分别是AB,BC的中点,A1C1与B1D1交于点O.
(1)求证:A1,C1,F,E四点共面;
(2)若底面ABCD是菱形,且A1E,求证:平面A1C1FE.
已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,,则;
②若,,则//;
③若//,,则;
④若//,α ∩ β =" n" ,则//.
其中正确命题的个数是
A.1个 | B.2个 | C.3个 | D.4个 |
如图,是正方体的棱的中点,给出下列命题
①过点有且只有一条直线与直线,都相交;
②过点有且只有一条直线与直线,都垂直;
③过点有且只有一个平面与直线,都相交;
④过点有且只有一个平面与直线,都平行.其中真命题是:
A.①②③ | B.①②④ | C.①③④ | D.②③④ |
如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正确的是( )
A.(1)和(3) | B.(2)和(5) |
C.(1)和(4) | D.(2)和(4) |
如图,三棱柱中,侧棱垂直底面,是棱的中点.
(1)证明:平面⊥平面;
(2)平面分此棱柱为两部分,求这两部分体积的比.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
试题篮
()