如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.
(1)求证:PQ//平面BCE;
(2)求证:AM平面ADF;
(3)求二面角A-DF-E的余弦值.
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.
求证:(I)PQ//平面BCE;
(II)求证:AM平面ADF;
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:平面;
(2)求点到平面的距离.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:∥平面;
(2)求证:AC⊥BC1.
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是( )
A.若m∥α,n∥α,则m∥n |
B.若m∥α,m∥β,则α∥β |
C.若m∥n,m⊥α,则n⊥α |
D.若m∥α,α⊥β,则m⊥β |
如图所示,已知AB为圆O的直径,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:;
(2)求二面角的余弦值.
下列命题中假命题是( )
A.垂直于同一条直线的两条直线相互垂直 |
B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 |
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直 |
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行 |
已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.
若关于直线与平面,有下列四个命题:
①若,,且,则;
②若,,且,则;
③若,,且,则;
④若,,且,则;
其中真命题的序号( )
A.①② | B.③④ | C.②③ | D.①④ |
设为两个不同平面,m、 n为两条不同的直线,且有两个命题:
P:若m∥n,则∥β;q:若m⊥β, 则α⊥β. 那么( )
A.“p或q”是假命题 | B.“p且q”是真命题 |
C.“非p或q”是假命题 | D.“非p且q”是真命题 |
设为两个不同平面,m、 n为两条不同的直线,且有两个命题:
P:若m∥n,则∥β;q:若m⊥β, 则α⊥β. 那么( )
A.“p或q”是假命题 | B.“p且q”是真命题 |
C.“非p或q”是假命题 | D.“非p且q”是真命题 |
试题篮
()