在空间中,过点作平面的垂线,垂足为,记.设是两个不同的平面,对空间任意一点,,恒有,则( )
A.平面与平面垂直 | B.平面与平面所成的(锐)二面角为 |
C.平面与平面平行 | D.平面与平面所成的(锐)二面角为 |
如图,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC,设点F为棱AD的中点.
(1)求证:DC平面ABC;
(2)求直线与平面ACD所成角的余弦值.
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=.
(Ⅰ)求证:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.
如图1所示,正△ABC中,CD是AB边上的高, E、F分别是AC、BC的中点.现将△ACD沿CD折起,使平面平面BCD(如图2),则下列结论中不正确的是( )
A.AB//平面DEF B.CD⊥平面ABD
C.EF⊥平面ACD D.V三棱锥C—ABD=4V三棱锥C—DEF
如图,在三棱锥中,,,为的中点,为的中点,且为正三角形.
(1)求证:平面;
(2)若,,求点到平面的距离.
在如图的几何体中,平面为正方形,平面为等腰梯形,,,,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )
A.平面ABD⊥平面ABC | B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC | D.平面ADC⊥平面ABC |
试题篮
()