优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

已知是两条不同的直线,是两个不同的平面,则下列命题正确的是(  )

A.若,则 B.若,则
C.若,则 D.若,则
  • 题型:未知
  • 难度:未知

下列命题中正确的个数是(  ).
(1)若直线上有无数个点不在平面内,则.
(2)若直线与平面平行,则与平面内的任意一条直线都平行.
(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.
(4)若直线与平面平行,则与平面内的任意一条直线都没有公共点.

A.0 B.1 C.2 D.3
  • 题型:未知
  • 难度:未知

下列命题中正确的个数是(   )
(1)若直线上有无数个点不在平面内,则.
(2)若直线与平面平行,则与平面内的任意一条直线都平行.
(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.
(4)若直线与平面平行,则与平面内的任意一条直线都没有公共点.

A.0 B.1 C. 2 D.3
  • 题型:未知
  • 难度:未知

如图,在四棱柱中,已知平面,且

(1)求证:;
(2)在棱BC上取一点E,使得∥平面,求的值.

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点.

(1)证明:DE∥平面PBC;
(2)证明:DE⊥平面PAB.

  • 题型:未知
  • 难度:未知

为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于
(2)若外一条直线内的一条直线平行,则平行;
(3)设相交于直线,若内有一条直线垂直于,则垂直;
(4)直线垂直的充分必要条件是内的两条直线垂直.
上面命题中,真命题的序号            (写出所有真命题的序号).

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC;
(2)若,求所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

  • 题型:未知
  • 难度:未知

是两个不同的平面,是一条直线,以下命题:
①若,则;②若,则; ③若,则;④若,则;其中正确命题的个数是(  )

A. B. C. D.
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

  • 题型:未知
  • 难度:未知

如图所示,直线垂直于⊙所在的平面,内接于⊙,且为⊙的直径,点为线段的中点.现有结论:①;②平面;③点到平面的距离等于线段的长.其中正确的是(    )

A.①② B.①②③ C.① D.②③
  • 题型:未知
  • 难度:未知

如图三棱锥中,是等边三角形.

(Ⅰ)求证:
(Ⅱ)若二面角 的大小为,求与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

已知两个不重合的平面和两条不同直线,则下列说法正确的是(     )

A.若
B.若
C.若
D.若
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

  • 题型:未知
  • 难度:未知

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题