优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于
(2)若外一条直线内的一条直线平行,则平行;
(3)设相交于直线,若内有一条直线垂直于,则垂直;
(4)直线垂直的充分必要条件是内的两条直线垂直.
上面命题中,真命题的序号           (写出所有真命题的序号).

  • 题型:未知
  • 难度:未知

如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。

(I)求证:AF//平面BCE;
(II)求证:平面BCE⊥平面CDE;
(III)求平面BCE与平面ACD所成锐二面角的大小。

  • 题型:未知
  • 难度:未知

平行四边形中,,以为折线,把折起,使平面平面,连结.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

  • 题型:未知
  • 难度:未知

已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有(  )

A.0个 B.1个 C.2个 D.3个
  • 题型:未知
  • 难度:未知

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求证:EM∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面? 若存在,确定
点N的位置;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(1)若点在线段上,问:无论的何处,是否都有?请证明你的结论;
(2)求二面角的平面角的余弦.

  • 题型:未知
  • 难度:未知

正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.

  • 题型:未知
  • 难度:未知

已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有 (  )

A.0个 B.1个 C.2个 D.3个
  • 题型:未知
  • 难度:未知

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求EC与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

对于平面和直线,下列命题中真命题是(    )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

  • 题型:未知
  • 难度:未知

在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是            (写出所有正确结论的编号)
①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

  • 题型:未知
  • 难度:未知

关于图中的正方体,下列说法正确的有: ___________.

点在线段上运动,棱锥体积不变;
点在线段上运动,直线AP与平面所成角不变;
③一个平面截此正方体,如果截面是三角形,则必为锐角三角形;
④一个平面截此正方体,如果截面是四边形,则必为平行四边形;
⑤平面截正方体得到一个六边形(如图所示),则截面在平面与平面间平行移动时此六边形周长先增大,后减小。

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题