如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
如图,已知矩形中,,,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上.
(1)求证:;
(2)求证:平面平面;
(3)求三棱锥的体积.
已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O为AB的中点.
(Ⅰ)求证:EO⊥平面ABCD;
(Ⅱ)求点D到平面AEC的距离.
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1) 证明:BD⊥平面PAC;
(2) 若AD=2,当PC与平面ABCD所成角的正切值为时,求四棱锥P-ABCD的外接球表面积.
已知四棱锥中,侧棱底面,且底面是边长为2的正方形,,与相交于点.
(I)证明:;
(II)求三棱锥的体积.
如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为平行四边形,其中AB=, BD=BC=1, AA1=2,E为DC的中点,F是棱DD1上的动点.
(1)求异面直线AD1与BE所成角的正切值;
(2)当DF为何值时,EF与BC1所成的角为90°?
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
如图,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有( )
A.SG⊥△EFG所在平面 | B.SD⊥△EFG所在平面 |
C.GF⊥△SEF所在平面 | D.GD⊥△SEF所在平面 |
如图所示,在直三棱柱中,,为的中点.
(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.
设为直线,是两个不同的平面,下列命题中正确的是( )
A.若,则 | B.若,则 |
C.若,则 | D.若,则 |
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.
(Ⅰ)求证:AG∥平面PEC;
(Ⅱ)求点G到平面PEC的距离.
试题篮
()