优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

(本小题满分12分)
如图,在底面为直角梯形的四棱锥P—ABCD中,
平面
(1)求证:平面PAC;
(2) 求二面角的大小.

  • 题型:未知
  • 难度:未知

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.

  • 题型:未知
  • 难度:未知

如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求二面角A—DC—B的余弦值。

  • 题型:未知
  • 难度:未知

如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.
(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,平面平面是以为斜边的等腰直角三角形,分别为的中点,
(1)设的中点,证明:平面
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,为空间四点.在中,.等边三角形为轴运动.
(1)当平面平面时,求
(2)当转动时,证明总有

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示多面体中,⊥平面为平行四边形,分别为的中点,.
(1)求证:∥平面
(2)若∠=90°,求证;
(3)若∠=120°,求该多面体的体积.

  • 题型:未知
  • 难度:未知

(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. 
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
在三棱柱中,侧棱,点的中点,
(1)求证:∥平面
(2)为棱的中点,试证明:

  • 题型:未知
  • 难度:未知

如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

(13分)如图,四棱锥的底面是正方形,,点在棱上.
(Ⅰ)求证:平面;   
(Ⅱ)当的中点时,求四面体体积.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题