优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

平面外有两条直线,如果在平面内的射影分别是,给出下列四个命题:① ② ③相交相交或重合 ④平行平行或重合,其中不正确的命题的个数是(     )

A.4个 B.3个 C.2个 D. 1
  • 题型:未知
  • 难度:未知

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.

  • 题型:未知
  • 难度:未知

如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,将△ADE绕DE旋转得到△A′DE(A′ 平面ABC),则下列叙述错误的是(   )

A. 平面A′FG⊥平面ABC
B.  BC∥平面A′DE
C. 三棱锥A′-DEF的体积最大值为
D. 直线DF与直线A′E不可能共面

  • 题型:未知
  • 难度:未知

如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,将△ADE绕DE旋转得到△A′DE(A′ 平面ABC),则下列叙述错误的是(   )

A. 平面A′FG⊥平面ABC
B.  BC∥平面A′DE
C. 三棱锥A′-DEF的体积最大值为
D. 直线DF与直线A′E不可能共面

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4

(Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.

  • 题型:未知
  • 难度:未知

在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.

  • 题型:未知
  • 难度:未知

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

  • 题型:未知
  • 难度:未知

如图,在底面为平行四边形的四棱柱中,底面,,,
(1)求证:平面平面
(2)若,求四棱锥的体积.

  • 题型:未知
  • 难度:未知

如图,是边长为2的正方形,⊥平面,,// 且.

(Ⅰ)求证:平面⊥平面
(Ⅱ)求几何体的体积.

  • 题型:未知
  • 难度:未知

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.

  • 题型:未知
  • 难度:未知

如图,正方形所在的平面与正方形所在的平面相互垂直,分别是的中点.
 
(1)求证:面
(2)求直线与平面所成的角正弦值.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,⊥底面,且,点分别为侧棱的中点 

(1)求证:∥平面
(2)求证:⊥平面.

  • 题型:未知
  • 难度:未知

(12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC

(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求点C到平面A1BD的距离.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,且,E是PC的中点.

(1)证明:;  
(2)证明:

  • 题型:未知
  • 难度:未知

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.

(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题