优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

如图,在梯形中,,,平面平面,四边形是矩形,,点在线段EF上.

(1)求异面直线所成的角;
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

  • 题型:未知
  • 难度:未知

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

  • 题型:未知
  • 难度:未知

如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.

  • 题型:未知
  • 难度:未知

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

  • 题型:未知
  • 难度:未知

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求

  • 题型:未知
  • 难度:未知

如图,已知直角梯形所在的平面垂直于平面

(Ⅰ)点是直线中点,证明平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是(  )

(1) AC⊥BE.
(2) 若P为AA1上的一点,则P到平面BEF的距离为.
(3) 三棱锥A-BEF的体积为定值.
(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.
(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.

A.0 B.1 C.2 D.3
  • 题型:未知
  • 难度:未知

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题