优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分14分)如图,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面.

(1)证明:平面
(2)证明:.

  • 题型:未知
  • 难度:未知

.(本小题满分14分)如图,已知三棱锥的三条侧棱两两垂直,△为等边三角形, 为△内部一点,点的延长线上,且

(1)证明:
(2)证明:平面平面
(3)若,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,直三棱柱(侧棱垂直于底面)中,,点是棱的中点,且.

(1)求证:
(2)求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,平面平面,,点在线段上移动.

(1)当点的中点时,求证:平面
(2)求证:无论点在线段的何处,总有

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在长方体中,的中点.

(Ⅰ)求证:
(Ⅱ)在棱上是否存在点,使得∥平面?若存在,求出的长;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图所示,在三棱锥中,,平面⊥平面

(1)求证:平面
(2)求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA平面ABCD,,E,F分别是BC, PC的中点.

(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正 切值为,求二面角E—AF—D的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)在三棱锥P-SBC中,A,D分别为边SB,SC的中点平面PSB平面ABCD,平面PAD平面ABCD

(1)求证:PA⊥BC;
(2)若平面PAD平面PBC=,求证:

  • 题型:未知
  • 难度:未知

(本小题满分14分)

如图1,在直角梯形中,,四边形是正方形.将正方形沿折起到四边形的位置,使平面平面的中点,如图2.
(1)求证:
(2)求与平面所成角的正弦值;
(3)判断直线的位置关系,并说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中, 四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知四棱锥的底面为菱形,.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.

  • 题型:未知
  • 难度:未知

如图:已知矩形所在平面与底面垂直,直角梯形//,
,.

(Ⅰ)求证:
(Ⅱ)求二面角的正弦值;
(Ⅲ)在边上找一点,使所成角的余弦值为,并求线段的长.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,平面,底面是菱形,的交点, 上任意一点.

(Ⅰ)证明:平面平面
(Ⅱ)若平面,并且二面角的大小为,求的值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题