优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)如图,在四棱锥中,平面,四边形满足,点中点,点边上的动点,且

(1)求证:平面平面
(2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,点的中点,且交于点

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求四棱锥的体积.

  • 题型:未知
  • 难度:未知

三棱柱中,侧棱与底面垂直,的中点,的交点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,三棱柱中,平面平面,四边形是矩形,分别为的中点.

(1)求证:∥平面
(2)求点到平面的距离.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,正方形所在平面与等腰三角形所在平面相交于
平面.

(1)求证:平面
(2)设是线段上一点,当直线与平面所成角的正弦值为时,试确定点的位置.

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在五面体中,四边形是边长为4的正方形,,平面平面,且,,点G是EF的中点.

(Ⅰ)证明:平面
(Ⅱ)若直线BF与平面所成角的正弦值为,求的长;
(Ⅲ)判断线段上是否存在一点,使//平面?若存在,求出的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在正方体中,分别为的中点.

(1)求证:平面
(2)求证:平面平面.

  • 题型:未知
  • 难度:未知

(本小题满分10分)已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:平面平面
(2)求所成角的余弦值;
(3)求平面与平面所成二面角(锐角)的余弦值.

  • 题型:未知
  • 难度:未知

如图,在多面体中,四边形是菱形,相交于点,平面平面,点的中点.

(1)求证:直线平面
(2)求证:直线平面

  • 题型:未知
  • 难度:未知

【原创】如图,在正方体中 
①求证:平面
②求证:与平面的交点的中心(正三角形五心合一,统称中心)

  • 题型:未知
  • 难度:未知

【改编】如图,已知

(1)在线段上找一点M,使
(2)求由面与面所成角的二面角的正切值。

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,平面平面,其中为矩形,为梯形,中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,已知中,
平面分别是的中点.

(1)求证:平面⊥平面
(2)设平面平面,求证
(3)求四棱锥B-CDFE的体积V.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在中,已知上,且平面.

(1)求证:⊥平面
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题